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Abstract

We consider the problem of nonparametric multi-product dynamic pricing with unknown
demand and show that the problem may be formulated as an online model-free stochastic pro-
gram, which can be solved by the classical Kiefer-Wolfowitz stochastic approximation (KWSA)
algorithm. We prove that the expected cumulative regret of the KWSA algorithm is bounded
above by κ1

√
T +κ2 where κ1, κ2 are positive constants and T is the number of periods for any

T = 1, 2, . . .. Therefore, the regret of the KWSA algorithm grows in the order of
√
T , which

achieves the lower bounds known for parametric dynamic pricing problems and shows that the
nonparametric problems are not necessarily more difficult to solve than the parametric ones.
Numerical experiments further demonstrate the effectiveness and efficiency of our proposed KW
pricing policy by comparing with some pricing policies in the literature.

Keywords: revenue management, dynamic pricing and learning, stochastic approximation,
Kiefer-Wolfowitz algorithm, nonparametric pricing policy

1 Introduction

Companies often need to make pricing decisions with little knowledge on the demand function. In

such cases, they may experiment different selling prices in different time periods to learn the demand

function (of the prices), and to find the optimal prices that maximize their revenues. The problem

has been studied extensively in the operations research and management science literature recently

(see Keskin and Zeevi (2014) and the references therein). Most of the papers consider a single

product and assume the demand function of the product follows a parametric model with unknown

∗L. Jeff Hong is the corresponding author. His email: hong liu@fudan.edu.cn
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parameters that need to be learned. For instance, den Boer and Zwart (2014) and Keskin and Zeevi

(2014) both assume the demand function is linear in the price, and Broder and Rusmevichientong

(2012) assume a parametric model of the customer’s willingness-to-pay distribution. One critical

insight learned from the literature is that a myopic pricing policy, which always sets the price as

the current best based on all the information collected in all previous periods, typically leads to

incomplete learning of the demand function, and is therefore not optimal. Here the incomplete

learning means that the parameters of the demand functions cannot be learned consistently, i.e.,

the parameter estimators do not converge to the true values as the number of periods goes to

infinity (cf. Keskin and Zeevi (2018) for a detailed introduction on incomplete learning).

To avoid incomplete learning, different pricing policies have been proposed. Broder and Rus-

mevichientong (2012) propose the MLE-CYCLE policy which separates demand learning and rev-

enue optimization. By balancing the two efforts in an optimal way, they show that the expected

cumulative regret (i.e., the difference between the expected cumulative revenues if we know the

optimal price and if we use the proposed pricing policy for all periods from 1 to T ) is of the order
√
T . den Boer and Zwart (2014) propose a controlled variance pricing (CVP) policy that perturbs

the myopic policy to prevent the price from concentrating too fast to ensure sufficient learning. By

controlling the variance in an optimal way, they also show that the expected cumulative regret is of

the order T 1/2+δ for a small δ > 0. Keskin and Zeevi (2014) also propose semi-myopic pricing poli-

cies to ensure complete learning and show that the expected cumulative regret is of the order
√
T

and they also extend their results to the pricing of multiple products. In all three aforementioned

pricing policies, the parameters of the demand function may be estimated consistently by using

forced exploration, thus avoiding incomplete learning. Recently, Keskin and Zeevi (2018) propose

a limited-memory learning scheme (i.e., adaptively choosing the estimation windows) to improve

the certainty-equivalence policy in both static and slowly time-varying environments without forced

exploration. Furthermore, Broder and Rusmevichientong (2012) and Keskin and Zeevi (2014) prove

respectively that the lower bounds of the expected cumulative regrets of their problems are
√
T ,

no matter what pricing policies are used. Therefore, the aforementioned pricing policies are either

asymptotically optimal or asymptotically near optimal.

In practice, the parametric form of the demand function is typically unknown and using para-

metric models may cause model mis-specifications that cannot be removed. To solve the problem,

Besbes and Zeevi (2015) consider a single-product pricing problem and take a nonparametric ap-

proach to approximate the demand function by a first-order Taylor’s expansion (i.e., a linear func-

tion) with a finite-difference derivative estimator. They show that, by controlling the size of the

finite difference appropriately and by allowing the derivative at the current solution to be learned

completely (i.e., converging to the true value), the resulted optimal price converges to the true one

and the expected cumulative regret is of the order
√
T (log T )2. This is a truly surprising result,
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because it shows that without a parametric assumption and without the complete learning of the

demand function, the expected cumulative regret of the nonparametric approach is almost asymp-

totically optimal even for a parametric problem. Furthermore, Besbes and Zeevi (2015) conjecture

that it is possible to achieve the optimal rate of
√
T even for the nonparametric approach.

In this note we extend the nonparametric formulation of Besbes and Zeevi (2015) to a multi-

product setting, and show that the problem is an example of model-free stochastic programs. We

propose to use a variant of Kiefer-Wolfowitz Stochastic Approximation (KWSA) algorithm, the

most famous model-free stochastic programming tool, to solve the problem and call it the Kiefer-

Wolfowitz (KW) pricing policy. Instead of analyzing the regret of our specific problem, we analyze

the regret of the KWSA algorithm for general stochastic programs and show that its expected

cumulative regret is bounded by κ1

√
T + κ2 for some problem-dependent constants κ1 > 0 and

κ2 > 0 for all T = 1, 2, . . .. By applying this general result to the multi-product dynamic pricing

problem, we show that the expected cumulative regret of the KW pricing policy is also bounded

above by κ1

√
T + κ2, which is asymptotically optimal based on the lower bounds of Broder and

Rusmevichientong (2012) and Keskin and Zeevi (2014) and which also proves the conjecture of

Besbes and Zeevi (2015), not only for single-product cases but also for multiple-product cases,

without assuming a parametric model of the demand function.

Our work is related to two different streams of literature.1 The first stream is dynamic pricing

with unknown demand learning in the revenue management area. Besides the aforementioned

papers, i.e., Broder and Rusmevichientong (2012), den Boer and Zwart (2014), Keskin and Zeevi

(2014, 2018) and Besbes and Zeevi (2015), we would like to add a few closely related works. Lobo

and Boyd (2003) is the first work that identifies through numerical studies that a myopic pricing

policy is not optimal for a linear demand function, and price dithering, i.e., adding noises to the

myopic solutions, may improve the performance of the pricing policy. Harrison et al. (2012) is

one of the early works that demonstrate a myopic Bayesian policy may lead to incomplete learning

under the simplest model uncertainty setting (i.e., a binary demand model). Interesting readers

may refer to Aviv and Vulcano (2012) and den Boer (2015) for comprehensive reviews on various

dynamic pricing and learning problem formulations.

The second stream of literature is stochastic approximation (SA). SA algorithms, such as those

of Robbins and Monro (1951) and Kiefer and Wolfowitz (1952), are typically used to solve offline

stochastic optimization problems, and they have been used in many different areas (cf. the books of

Benveniste et al. (1990) and Kushner and Yin (2003) for introductions). The rates of convergence

of these algorithms have been studied extensively (see Chapter 10 of Kushner and Yin (2003)).

In particular, Fabian (1967) proved that the asymptotic rate of convergence of the solutions is

1There is an abundant literature on both dynamic pricing and stochastic approximation. Due to the space
limitation of a technical note, we focus only on the works that are closely related to the problem studied in this
paper.
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T−1/4. This result implies that, if the algorithm is used to solve online stochastic optimization

problems (such as ours), the asymptotic rate of the regret is
√
T .2 The same asymptotic rate was

also obtained by Cope (2009). However, the rate of convergence results are typically asymptotic.

In this note, we borrow some ideas of Nemirovski et al. (2009), who propose a robust SA algorithm,

to conduct a finite-time regret analysis of our variant of KWSA algorithm and show that the regret

is upper bounded by κ1

√
T + κ2 for all T = 1, 2, . . ..

KWSA algorithm, which is the fundamental algorithm behind our approach, is also an example

of the zeroth-order (or derivative-free) stochastic convex optimization in the literature. Compared

with first-order problems (i.e., the gradient information is available) whose rate of convergence of

the cumulative regret is lower bounded by O(log T ) for strongly convex cost functions (cf. Zinke-

vich 2003), zeroth-order problems are in general more difficult and the rate of convergence of the

cumulative regret is only lower bounded by O(
√
T ) (see, for instant, the algorithms in Agarwal et

al. (2010) achieving the optimal bound O(
√
T ) for strongly convex functions and Agarwal et al.

(2013) achieving a near-optimal bound O(
√
T (log T )2) for general convex functions, respectively).

Interested readers may refer to Table 1 in both Shamir (2013) and Besbes et al. (2015) for sum-

maries on the rate of convergence of the average regret and cumulative regret under various settings

of stochastic convex optimization problems.

Indeed, both den Boer and Zwart (2014) and Besbes and Zeevi (2015) also notice the connection

of the dynamic pricing problem to SA algorithms. However, den Boer and Zwart (2014) point

out that SA algorithms are used to solve offline problems instead of online problems and “the

performance [of a SA algorithm] is measured by the quality of the estimate of the maximizer, and

not by the cumulative costs [i.e., regrets] that leads to the estimate.” In this note, we show that

SA algorithms can also be used to solve online optimization problems and achieve asymptotic

optimality. Besbes and Zeevi (2015) have a subsection on KWSA algorithms (i.e., Section 3.3).

But as they point out, their focus is not on the nonparametric approach to solving the problem

but “to understand whether policies that are typically used for learning and earning (and designed

for well-specified scenarios) suffer from misspecification.” In this note, our focus is to explore

the asymptotical optimality of the KWSA algorithm in solving the multi-product dynamic pricing

problem.

We want to emphasize that the regret analysis of the KWSA algorithm is quite standard and it

is not the main contribution of this technical note. Instead, this technical note only tries to connect

the two streams of literature, and shows that the dynamic pricing problem can indeed be solved

by the KWSA algorithm with the optimal rate.

2The terms “offline” and “online” refer to two types of objectives when solving stochastic optimization problems.
In offline problems, we only care about the quality of the final solution when the algorithm stops. In online problems,
we care about the quality of every solution that the algorithm evaluates before it stops, in particular we want to
minimize the cumulative optimality gaps (i.e., cumulative regrets) between every evaluated solution and the optimal.
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The rest of this technical note is organized as follows: In Section 2 we introduce our variant of the

KWSA algorithm and analyze its finite-time regret. In Section 3 we formulate the nonparametric

multi-product dynamic pricing problem and show that it may be solve by the KWSA algorithm

and the resulted KW pricing policy is asymptotically optimal. Numerical studies demonstrate

the effectiveness and efficiency of our KW pricing policy by comparing with some existing pricing

policies in Section 4, followed by concluding remarks in Section 5. Some additional proofs are

included in the appendix.

2 KWSA Algorithm and Finite-Time Regret

Consider the following online stochastic optimization problem:

min
x∈Ω

{f(x) := E[F (x, ξ)]} , (1)

where Ω ⊂ <d is convex and compact. We propose to use the following variant of KWSA algorithm

to solve the problem. Let {an, n = 1, 2, . . .} and {cn, n = 1, 2, . . .} be two positive sequences of real

numbers, which will be used in the algorithm.

Algorithm 1 (Online KWSA Algorithm).

Initialization. Let x0 ∈ Ω be a starting solution. Let the iteration counter n = 1 and period

counter t = 0.

Step 1. Function evaluations and information collection.

• Let t = t+ 1. Set x̃t = xn and observe F (x̃t, ξn,0);

• For i = 1, 2, . . . , d,

Let t = t+ 1. Set x̃t = xn + cnei and observe F (x̃t, ξn,i).

End the for-loop.

Step 2. Updating.

Let

xn+1 = ΠΩ (xn − anG(xn)) ,

where ΠΩ is a projection operator onto the set Ω, i.e., ΠΩ(x) = argminx′∈Ω‖x− x′‖, and

G(xn) =
1

cn
([F (xn + cne1, ξn,1)− F (xn, ξn,0)] , . . . , [F (xn + cned, ξn,d)− F (xn, ξn,0)])T .

Let n = n+ 1 and go back to Step 1.

Remark 1. Note that during each iteration round, Algorithm 1 conducts d+ 1 periods of function

evaluations. That is, in the nth iteration, the time period t changes from k+ 1 to k+ d+ 1, where
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k = n(d+1), and the function evaluations have been taken down over x̃k+1 = xn, x̃k+2 = xn+cne1,

. . . , x̃k+d+1 = xn + cned. Also note that {an, n = 1, 2, . . .} and {cn, n = 1, 2, . . .} in Algorithm 1

as well as in Algorithm 2 can be properly selected to guarantee the convergence rate, which will be

introduced in details in Theorems 1 and 2 and be discussed more in Remark 5.

Algorithm 1 is different from the classical KWSA algorithm of Kiefer and Wolfowitz (1952) in

two aspects. First, the classical KWSA algorithm is for solving offline optimization problems where

only the terminal solutions of the iterations, i.e., x1,x2, . . ., are of interest. While in our version of

the algorithm, we are interested in all evaluated solutions x̃1, x̃2, . . . because they all produce regret.

This is the difference between offline and online stochastic optimizations. Second, Algorithm 1 uses

a forward finite-difference gradient estimator G(xn) instead of a central finite-difference estimator.

We show in Remark 5 that the asymptotic growth rates of the expected cumulative regret of using

both gradient estimators are the same. Therefore, we use the forward finite-difference estimator

for simplicity.

Let x∗ = argminx∈Ω f(x) be the optimal solution of Problem (1). Then, we may define the

expected cumulative regret of the first T periods as

R(T ) =
T∑
t=1

E [f(x̃t)− f(x∗)]

for any T = 1, 2, . . ..

To analyze the regret R(T ) of Algorithm (1) in solving Problem (1), we make the following

assumptions on the problem.

Assumption 1. There exists a finite constant M > 0 such that E
{

[F (x, ξ)]2
}
≤M for all x ∈ Ω.

Assumption 2. The expected value function f(x) is twice continuously differentiable in Ω.

Assumption 3. The expected value function f(x) is strongly convex in Ω, i.e., there exists a finite

constant B1 > 0 such that

f(x′) ≥ f(x) +∇f(x)T(x′ − x) +
1

2
B1‖x′ − x‖2.

Notice that Assumption 1 implies that f(x) is well defined for all x ∈ Ω, Assumptions 2 implies

that

‖∇2f(x)‖ ≤ B2 (2)

for some finite B2 > 0 for all x ∈ Ω, and Assumption 3 implies that[
∇f(x′)−∇f(x)

]T
(x′ − x) ≥ B1‖x′ − x‖ (3)

for all x,x′ ∈ Ω. Moreover, Assumption 3 also implies that there is a unique optimal solution to

Problem (1). We denote it as x∗ and make the following assumption to assume it is in the interior

of Ω, i.e. int(Ω), which implies that ∇f(x∗) = 0.
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Assumption 4. The optimal solution x∗ satisfies x∗ ∈ int(Ω).

Given the above assumptions, we can prove the following theorem that bounds E
[
‖xn − x∗‖2

]
.

The analysis used to prove the theorem is motivated by Kiefer and Wolfowitz (1952) and Nemirovski

et al. (2009). In particular, Nemirovski et al. (2009) analyze the convergence of E
[
‖xn − x∗‖2

]
of

Robbins-Monro SA algorithm, which assumes an unbiased estimator of ∇f(xn) is available, known

as the first-order stochastic optimization problem in the literature. In our algorithm, it is not

available and a forward finite-difference estimator is used instead.

Theorem 1. Suppose that Algorithm 1 is used to solve Problem (1) and Assumptions 1 to 4 are

satisfied. Let an = γn−1 and cn = δn−
1
4 with 1/(4B1) < γ < 1/(2B1) and δ > 0. Then, there exists

a constant λ > 0 such that E
[
‖xn − x∗‖2

]
≤ λn−

1
2 for all n = 1, 2, . . ..

Proof. Let bn = E
[
‖xn − x∗‖2

]
. Notice that ΠΩ(x∗) = x∗ and ‖ΠΩ(x)−ΠΩ(x′)‖ ≤ ‖x−x′‖. Then,

bn+1 = E
{
‖ΠΩ (xn − anG(xn))− x∗‖2

}
= E

{
‖ΠΩ (xn − anG(xn))−ΠΩ(x∗)‖2

}
≤ E

{
‖xn − anG(xn)− x∗‖2

}
= bn + a2

nE
(
‖G(xn)‖2

)
− 2anE

[
G(xn)T(xn − x∗)

]
. (4)

Let

g(x) =
1

cn
([f(xn + cne1)− f(xn)] , . . . , [f(xn + cned)− f(xn)])T .

Notice that

E
[
G(xn)T(xn − x∗)

]
= E

{
E
[
G(xn)T(xn − x∗)

∣∣xn]}
= E

[
g(xn)T(xn − x∗)

]
= E

[
∇f(xn)T(xn − x∗)

]
+ E

[
(g(xn)−∇f(xn))T (xn − x∗)

]
. (5)

By Assumption 4, ∇f(x∗) = 0. Then, by Equation (3),

E
[
∇f(xn)T(xn − x∗)

]
= E

{
[∇f(xn)−∇f(x∗)]T (xn − x∗)

}
≥ B1E

[
‖xn − x∗‖2

]
= B1bn. (6)

Notice that, by Taylor’s expansion and Equation (2),

g(xn)−∇f(xn) =
1

2
cn
(
eT1∇2(η1)e1, . . . , e

T
d∇2(ηd)ed

)T ≤ 1

2
B2cn1,

where 1 is a d-dimensional vector with all elements being 1. Then,

E
[
(g(xn)−∇f(xn))T (xn − x∗)

]
≥ −1

2
B2cnE [|xn − x∗|] ≥ −1

2
B2cn

√
d
√
bn, (7)
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where the last inequality follows from Jensen’s inequality. Therefore, by Equations (5), (6) and (7),

E
[
G(xn)T(xn − x∗)

]
≥ B1bn −

1

2
B2cn

√
d
√
bn. (8)

Furthermore, by Assumption 1,

E
(
‖G(xn)‖2

)
≤ 4dM2

c2
n

. (9)

Then, by Equations (4), (8) and (9),

bn+1 ≤ (1− 2anB1)bn + ancnB2

√
d
√
bn +

4da2
n

c2
n

M2. (10)

Notice that an = γn−1 and cn = δn−
1
4 with 1/(4B1) < γ < 1/(2B1) and δ > 0. Then, we have

bn+1 ≤
(

1− 2γB1

n

)
bn + γδB2

√
dn−

5
4

√
bn +

4dγ2M2

δ2
n−

3
2 . (11)

By induction (see Appendix), there exists λ > 0 such that

bn ≤ λn−
1
2 , n = 1, 2, . . . (12)

This concludes the proof of the theorem.

Remark 2. Fabian (1967) proves that E
[
‖xn − x∗‖2

]
= O

(
n−

1
2

)
. In Theorem 1 we provide a

finite-time upper bound of E
[
‖xn − x∗‖2

]
which implies the result proved by Fabian (1967).

Remark 3. If we use Algorithm 1 to solve an offline stochastic program, we may consider using

a central finite-difference gradient estimator. By Fabian (1967), if we set an = γn−1 and cn =

δn−
1
6 , using a central finite-difference estimator may result in a better rate of convergence, i.e.,

E
[
‖xn − x∗‖2

]
= O

(
n−

2
3

)
. However, in Remark 5, we show that using central finite-difference

estimators does not lower the growth rate of the expected cumulative regret.

Based on Theorem 1, we can prove the following theorem that provides a finite-time bound on

expected cumulative regret of Algorithm 1.

Theorem 2. Suppose that Algorithm 1 is used to solve Problem (1) and Assumptions 1 to 4 are

satisfied. Let an = γn−1 and cn = δn−
1
4 with 1/(4B1) < γ < 1/(2B1) and δ > 0. Then, there exists

constant κ1 > 0 and κ2 > 0 such that R(T ) ≤ κ1

√
T + κ2 for all T = 1, 2, . . ..

Proof. Notice that, in each iteration of Algorithm 1, d+ 1 solutions, xn,xn + cne1, . . . ,xn + cned,

need to be evaluated. Let r(n) denote the expected regret of iteration n, n = 1, 2, . . . . Then,

r(n) = E [F (xn, ξn,0) + F (xn + cne1, ξn,1) + · · ·+ F (xn + cned, ξn,d)]− (d+ 1)f(x∗)

= E [f(xn)− f(x∗)] + E [f(xn + cne1)− f(x∗)] + · · ·+ E [f(xn + cned)− f(x∗)] . (13)
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Notice that ∇f(x∗) = 0 (by Assumption 4) and ‖∇2f(x)‖ ≤ B2 for all x ∈ Ω (by Equation 2).

Then, we have

f(xn)− f(x∗) ≤ 1

2
B2‖xn − x∗‖2,

f(xn + cnei)− f(x∗) ≤ 1

2
B2‖xn + cnei − x∗‖2 ≤ B2

(
‖xn − x∗‖2 + c2

n

)
, i = 1, . . . , d.

Then, by Equation (13) and Theorem 1,

r(n) ≤
(

1

2
+ d

)
B2bn + dB2c

2
n ≤

(
2d+ 1

2
λ+ dδ2

)
B2 n

− 1
2 . (14)

Then,

R(T ) ≤
dT/(d+1)e∑

n=1

r(n) =

(
2d+ 1

2
λ+ dδ2

)
B2

dT/(d+1)e∑
n=1

n−
1
2

≤
(

2d+ 1

2
λ+ dδ2

)
B2

∫ (T+d)/(d+1)

0
x−

1
2dx ≤

[
(2d+ 1)λ+ 2dδ2

]
B2√

d+ 1

(√
T +
√
d
)

≤ 2(λ+ δ2)
√
d+ 1 ·

√
T + 2(λ+ δ2)(d+ 1).

This concludes the proof of the theorem with κ1 = 2(λ+ δ2)
√
d+ 1 and κ2 = 2(λ+ δ2)(d+ 1).

Remark 4. Cope (2009) proves that R(T ) = O(
√
T ). In Theorem 2 we provide a finite-time upper

bound of R(T ) which implies the result of Cope (2009).

Remark 5. In Remark 3, we point out that using a central finite-difference gradient estimator

may result in a better rate of convergence for E
[
‖xn − x∗‖2

]
if setting cn = δn−

1
6 . Notice that,

by Equation (14), r(n) ≤ ν1E
[
‖xn − x∗‖2

]
+ ν2c

2
n for some ν1 > 0 and ν2 > 0. Then, the regret

r(n) = O
(
max

{
E
[
‖xn − x∗‖2

]
, c2
n

})
. If using a central finite-difference estimator with cn = δn−

1
6 ,

r(n) will be dominated by c2
n and r(n) = O

(
n−

1
3

)
, causing R(T ) = O

(
T

2
3

)
, which is not as good

as O(
√
T ). Therefore, even when using a central finite-difference gradient estimator, we also need

to set cn = δn−
1
4 , which leads to the same O(

√
T ) of the regret.

3 Multi-Product Dynamic Pricing

Consider a firm that sells d different products over multiple periods. The firm may set the prices

of the products, denoted by p = (p1, . . . , pd)
T, at the beginning of each period and observe the

random demands, denoted by D(p) = (D1(p), . . . , Dd(p))T. The revenue of the period is then

Θ(p) = pTD(p) =
d∑
i=1

piDi(p).
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The objective of the firm is to choose the price p from a set of permissible prices, denoted by Ω, to

maximize the expected revenue, i.e.,

max
p∈Ω

{θ(p) := E[Θ(p)]} . (15)

A difficulty in solving Problem (15) is that the distribution of D(p) (and also the expected

demand function E[D(p)]) may be unknown. Therefore, Problem (15) cannot be solved directly.

Instead, one may design a pricing policy to determine the prices at the beginning of each period,

based on the information up to the period, and observe the corresponding demands and the revenue.

Let Ψ be a pricing policy which sets pt = Ψ (p1, . . . ,pt−1,D1(p1), . . . ,Dt−1(pt−1)). Our goal is

to find a pricing policy Ψ that maximizes the expected cumulative revenue of the first T periods,

which is equivalent to minimize the expected cumulative regret

R(T,Ψ) =

T∑
t=1

E[θ(p∗)− θ(pt)], (16)

where p∗ is the true optimal price but unknown to us.

In this note we take a nonparametric approach that does not assume D(p) to follow any para-

metric model. Notice that our formulation is extremely general. It allows different cross elasticities

among the demands, either complementary or substitutable, and it includes the parametric demand

models of Broder and Rusmevichientong (2012), den Boer and Zwart (2014) and Keskin and Zeevi

(2014) and the single-product nonparametric demand model of Besbes and Zeevi (2015) as special

cases. Then, by den Boer and Zwart (2014) and Keskin and Zeevi (2014), we know that R(T,Ψ)

grows at least in the order of
√
T for any feasible policy Ψ.

Based on the KWSA algorithm (i.e., Algorithm 1), we propose the following Kiefer-Wolfowitz

(KW) pricing policy, denoted by ΨKW.

Algorithm 2 (KW Pricing Policy).

Initialization. Let p0 ∈ Ω by a starting price vector. Let the iteration counter n = 1 and period

counter t = 0.

Step 1. Pricing and information collection.

• Let t = t+ 1. Set p̃t = pn and observe Θt = Θt(p̃t);

• For i = 1, 2, . . . , d,

Let t = t+ 1. Set p̃t = pn + cnei and observe Θt = Θt(p̃t).

End the for-loop.

Step 2. Updating.

Let

pn+1 = ΠΩ (pn + anG(pn)) ,

10



where ΠΩ is a projection operator onto the set Ω, i.e., ΠΩ(p) = argminp′∈Ω‖p− p′‖, and

G(pn) =
1

cn
[(Θk+2 −Θk+1) , . . . , (Θk+d+1 −Θk+1)]T

with k = n(d+ 1).3 Let n = n+ 1 and go back to Step 1.

Notice that the KW pricing policy is very different from the existing policies in the literature.

As pointed out by Keskin and Zeevi (2014), complete learning is critical to the pricing policies

proposed by Broder and Rusmevichientong (2012), den Boer and Zwart (2014) and Keskin and

Zeevi (2014). Here the complete learning means that the parameters of the demand models need

to be learned consistently, i.e., the parameter estimators converge to the true values as the number

of periods goes to infinity. For the nonparametric approach proposed by Besbes and Zeevi (2015),

complete learning of the demand function is not necessary. Nevertheless, the derivative estimator

of the expected demand function still needs to be learned consistently. To achieve that, Besbes and

Zeevi (2015) force the iterations become longer and longer, so that the finite-difference derivative

estimator becomes more and more accurate. In the KW pricing policy, however, the length of the

iteration is always fixed (i.e., d+ 1) and the finite-difference gradient estimator is always noisy and

inconsistent. To ensure convergence, the KW pricing policy uses a slow optimizing strategy, only

changing the price vector by a size of an along the estimated (noisy) gradient direction and allowing

the errors to cancel out in the limit, and the strategy leads to an asymptotically optimal pricing

policy (as shown in Theorem 3). In contrast, pricing policies of Broder and Rusmevichientong

(2012), den Boer and Zwart (2014), Keskin and Zeevi (2014) and Besbes and Zeevi (2015) all

use an aggressive optimizing strategy, moving the price directly to the myopically optimal solution

(with some adjustments to avoid incomplete learning). With the aggressive optimizing strategy,

their policies need complete learning of either the demand function or the derivative. We use a

multi-product linear demand model to illustrate the differences between the aggressive optimizing

and the slow optimizing strategies in Section 4.4.

The following theorem establishes a finite-time upper bound of the expected cumulative regret

for the KW pricing policy when solving the multi-product dynamic pricing problem. It is based on

Theorems 1 and 2.

Theorem 3. Suppose that the KW pricing policy is used to solve Problem (15) and that the fol-

lowing assumptions hold:

1. Ω ⊂ <d is a convex and compact set and p∗ ∈ int(Ω);

2. E[D(p)] is twice continuously differentiable in Ω and maxp∈Ω E
[
‖D(p)‖2

]
<∞;

3Note that the index k introduced here is only for notational simplification of the expressions of Θt, where t =
k+1, . . . , k+d+1. In order to make the expression of G(pn) in Algorithm 2 consistent with that of G(xn) Algorithm 1,
in fact, we can rewrite G(xn) = 1

cn
([F (x̃k+2, ξn,1) − F (x̃k+1, ξn,0)] , . . . , [F (x̃k+d+1, ξn,d) − F (x̃k+1, ξn,0)])T, with

k = n(d+ 1).

11



3. θ(p) is strongly concave.

Then, there exist constants λ > 0, κ1 > 0 and κ2 > 0 such that E
(
‖pn − p∗‖2

)
≤ λn−

1
2 for all

n = 1, 2, . . . and R(T,ΨKW) ≤ κ1

√
T + κ2 for all T = 1, 2, . . ..

By the lower bounds of the expected cumulative regret established by Broder and Rusmevichien-

tong (2012) and Keskin and Zeevi (2014), Theorem 3 essentially shows that the KW pricing policy

is asymptotically optimal. It also shows that the conjecture of Besbes and Zeevi (2015) is true

not only for single-product dynamic pricing problems but also for multi-product dynamic pricing

problems. It further confirms the surprising finding of Besbes and Zeevi (2015) that, in terms of

the asymptotic growth rate of the expected cumulative regret, the nonparametric approach may

be as good as the parametric one. Nevertheless, the nonparametric approach may avoid model

misspecifications that always exist in parametric models.

4 Numerical Experiments

In this section, we conduct numerical experiments to show the practical performance of the KW

pricing policy under single- or multi-product linear or nonlinear demand models. We first demon-

strate that the cumulative regret indeed grows in the order of
√
T in Section 4.1. Ideally, we would

like to compare our KW pricing policy with other nonparametric multi-product pricing policies.

However, there are no such policies. Therefore, we compare to the multiple-product parametric

policies of Keskin and Zeevi (2014) under their parametric demand models in Section 4.2. How-

ever, we do not assume that the parametric forms of the demand models are known to the KW

policy. In Section 4.3, we compare the KW pricing policy to the single-product nonparametric pol-

icy of Besbes and Zeevi (2015). Finally, in Section 4.4, we illustrate the slow optimizing strategy

by a comparison among the KW policy, Greedy ILS (iterated least squares) policy and the MCILS

(multivariate constrained iterative least squares) policy of Keskin and Zeevi (2014).

4.1 Illustration of the Rate Optimality of the Total Regret

We adopt the same multi-product linear demand model used in Keskin and Zeevi (2014), in which

the random demand for product i in period t, denoted by Dt(pt) = (D1t(pt), . . . , Ddt(pt))
T, has

the following linear form,

Dit(pt) = αi + βi · pt + εit, for i = 1, . . . , d, and t = 1, 2, . . . ,

where pt = (p1t, . . . , pdt)
T is the price for all products at period t, and αi ∈ <, βi = (βi1, . . . , βid) ∈

<d are the unknown parameters, and εit are independent and identically distributed (i.i.d.) normal

random variables with mean zero and variance σ2. We assume that the compact set of all feasible

12



Figure 1: Average cumulative regret of the KW pricing policy.

prices is Ω =
{
p : p ∈ [l1, u1] × [l2, u2] × · · · × [ld, ud]

}
, where 0 ≤ li < ui < ∞ for i = 1, 2, . . . , d.

In the matrix form, the demand model can be expressed as follows,

Dt(pt) = α + Bpt + εt, for t = 1, 2, . . . ,

where εt = (ε1t, . . . , εdt)
T ∈ <n, α = (α1, . . . , αd)

T ∈ <d, and B is a d× d matrix

B =


β11 β12 · · · β1d

β21 β22 · · · β2d
...

...
. . .

...
βd1 βd2 · · · βdd

 .
Then, the optimal price p∗ = −(B + BT)−1α.

In the following experiment, we all consider the 2-product case, i.e., d = 2. Other parameters

are set as follows, α = (1.1, 0.7)T, B =

[
−0.5 0.05
0.05 −0.3

]
, σ2 = 0.01, and [l1, u1] = [0.1, 2.5], [l2, u2] =

[0.1, 2.5]. The initial price is p0 = (0.75, 2.1)T and γ = 3 and δ = 1 in the positive sequences of

{an} and {cn}. Then the optimal price is p∗ ≈ (1.237, 1.373)T.

Figure 1 displays the average T -period regret R(T,ΨKW) and its 95% confidence interval (CI)

over 100 macro-replications with respect to
√
T , where T = 1, 2, . . . , 3000. From Figure 1, we find

that, except for the cases of small T (roughly T ≤ 25 in our setting), the expected cumulative

regret of the KW pricing policy grows linearly in the order of
√
T , which verifies the performance

guarantee obtained in Theorem 3.

4.2 Comparison with Multi-product Parametric Pricing Policies

We consider the multi-product linear demand model and compare our KW pricing policy with two

policies, i.e., the ILS and MCILS policies, proposed by Keskin and Zeevi (2014). The parameter

settings are the same as used in Section 4.1.

13



Figure 2: Comparisons between the ILS and KW pricing policies.

Figure 2 displays the average T -period regret R(T,ΨKW) and R(T,ΨILS), as well as their 95%

CIs, respectively, over 100 macro-replications for T = 1, 2, . . . , 3000. From Figure 2, we find that the

cumulative regret for the KW policy increases slightly (in the order of
√
T ) while that for the ILS

policy increases linearly with respect to T . This finding demonstrates the phenomenon of incomplete

learning, since the greedy ILS estimates may get stuck at some non-optimal values without further

exploration, resulting a constant fraction of revenue loss in each period, thus leading to a linearly

increasing cumulative regret. However, in the KW pricing policy, during each iteration, we perturb

the price by small amount for each single product once, observe the corresponding demand for all

products, and then update the whole price using the stochastic gradient at the end of each iteration,

which has inherently taken the tradeoff between exploration and exploitation into consideration.

It is also worthwhile pointing out that, by a comparison of the 95% CI between the greedy ILS

and KW pricing policies, KW policy seems more stable than ILS, which is not surprising since ILS

often stops at different non-optimal points, resulting a large variation of its solution quality.

To avoid the incomplete learning and achieve the asymptotic optimality, Keskin and Zeevi

(2014) propose a MCILS(κ) policy, where κ is a threshold parameter, that adjusts the greedy ILS

price whenever its deviation from the historical average price is not sufficiently large. By doing so,

they show that MCILS(κ) policy achieves an O(
√
T log T ) of the cumulative regret. To compare

the performances of the MCILS(κ) and KW pricing policy, we still consider a 2-product linear

demand model under the same parameter settings as in Section 4.1. In order to implement the

MCILS(κ) policy, we also need to choose the first three additional price vectors as p1 = (2.0, 2.0)T,

p2 = (2.0, 0.75)T, p3 = (0.75, 2.0)T, and determine the value of the threshold κ, which is set as

κ = 0.8, 1.0, 1.2, respectively.

Figure 3 presents the average T -period regret R(T,ΨKW) and R(T,ΨMCILS(κ)) with different
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(a) MCILS(κ = 0.8) v.s. KW (b) MCILS(κ = 1.0) v.s. KW (c) MCILS(κ = 1.2) v.s. KW

Figure 3: Comparisons between the MCILS(κ) and KW pricing policies.

κ, over 100 macro-replications for T = 1, 2, . . . , 300. We notice that MCILS(κ) performs well

without surprise because it is a specifically designed policy for the multi-product linear demand

model. However, it is worthwhile pointing out that our non-parametric KW pricing policy is also

competitive compared with the MCILS(κ) policy if the parameter κ is chosen improperly (e.g.,

κ = 1.2 in our settings). Even through the O(
√
T log T ) of the growth rate of R(T,ΨMCILS(κ)) will

not change in terms of κ, the value of R(T,ΨMCILS(κ)) varies significantly for different values of κ.

In fact, we know that when κ is too large, MCILS(κ) reduces to the greedy ILS; meanwhile when κ

is too small, the algorithm forces exploration in almost every step, causing a lot of computational

efforts.

4.3 Comparison with a Single-product Nonparametric Pricing Policy

In this subsection, we use the single-product general demand model of Besbes and Zeevi (2015)

as follows. In each period, the seller chooses a price pt from Ω = [l, u], and observes a demand

response,

Dt(pt) = λ(pt) + εt, t = 1, 2, . . . ,

where λ(·) is a positive, strictly decreasing and twice continuously differentiable function, and εt,

t = 1, 2, . . ., are i.i.d. normal random variables with zero mean and variance σ2.

Besbes and Zeevi (2015) propose a linear semimyopic policy, which is nonparametric and whose

regret is upper bounded by the order of
√
T (log T )2. We compare the performances of the KW

pricing policy and the linear semimyopic policy under three different demand models, i.e., the

linear, exponential, and logit models, as follows.

(a) Linear: λ(p) = (α − βp)+, where α = 1, β = 0.5, and σ2 = 0.052. Let Ω = [l, u] = [0.5, 1.5],

and then the optimal price is p∗ = 1. Let p̂1 = 0.7, Ii = 1, δt = ρt−1/4 where ρ = 0.5, and

Ti = {1, . . . , ti+1} for the semimyopic policy; and let p0 = 0.7, γ = 3 and δ = 1 for the KW

pricing policy.
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(a) Under linear model (b) Under exponential model (c) Under logit model

Figure 4: Comparisons between the semimyopic and KW pricing policies.

(b) Exponential: λ(p) = exp(α − βp), where α = 1, β = 0.3, and σ2 = 0.052. Let Ω = [l, u] =

[2.5, 3.5], and then the optimal price is p∗ = 3. Let p̂1 = 2.7, Ii = 1, δt = ρt−1/4 where

ρ = 0.2, and Ti = {1, . . . , ti+1} for the semimyopic policy; and let p0 = 2.7, γ = 3 and δ = 1

for the KW pricing policy.

(c) Logit: λ(p) = exp(α − βp)/(1 + exp(α − βp)), where α = 1, β = 0.3, and σ2 = 0.052. Let

Ω = [l, u] = [3, 7], and then the optimal price is p∗ ≈ 5.2238. Let p̂1 = 4.5, Ii = 1, δt = ρt−1/4

where ρ = 0.5, and Ti = {1, . . . , ti+1} for the semimyopic policy; and let p0 = 4.5, γ = 10 and

δ = 1 for the KW pricing policy.

Figure 4 presents the averaged cumulative regrets of the KW pricing policy and the semimyopic

policy under linear, exponential and logit demand models, respectively, over 100 macro-replications

for T = 1, 2, . . . , 200. From Figure 4, we observe that the semimyopic policy outperforms the

KW pricing policy when the underlying model is indeed linear, which is not surprising because

the semimyopic policy presumes that the underlying demand model as linear and estimates the

parameters based on a linear curve. However, when the underlying demand model is nonlinear

(e.g., exponential or logit), the performance of the KW pricing policy is generally better than that

of the semimyopic policy, which indicates that the KW pricing policy may have advantages when

applied to the dynamic pricing context with nonlinear demand models.

4.4 Illustration of the Aggressive and Slow Optimizing Strategies

In Section 3, we mention that many existing pricing policies use an aggressive optimizing strategy,

while the KW pricing policy uses a slow optimizing strategy. In this subsection, we continue to use

the 2-product linear demand model in Section 4.2 and to compare the KW pricing policy with the

ILS policy and MCILS (κ = 1.2) policy. The parameter settings remain the same.

In Figure 5, the horizontal axis p1 and the vertical axis p2 denote the prices of the two products,

respectively, and the star denotes the theoretical optimal price p∗. We present the scatter plots of
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Figure 5: Illustration of the aggressive and slow optimizing strategies.

the price evaluation points determined by ILS, MCILS and KW pricing policies along different time

periods during one macro-simulation run. In particular, we choose the same time period intervals

for three policies, namely, t ∈ [0, 2000], [8000, 10000] and [28000, 30000].

From the top three subplots in Figure 5, we observe that the price points evaluated by the

greedy ILS policy converge very quickly during the first time interval, which reflects the term of

“greedy” in its name, but soon get stuck at an non-optimal price point. This is the so-called

incomplete learning phenomenon. In the middle three subplots, we observe that there exist a clear

circular trajectory around the optimal price point. The radius of the the circle diminishes as time

period increases. Eventually, the circular trajectories gradually shrink to the optimal point. That

is because MCILS policy enforces some computational effort for exploration to slow down the active

learning speed towards the optimal directions to avoid incomplete learning. In the bottom three
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subplots, we observe that the price points evaluated by the KW policy appear three clusters of

cloud shadows. The clusters will become more concentrated and closer to the optimal price point

over time, which typically reflects the inactive learning (or slow optimizing, in other words). It

is worth mentioning that although slow optimizing strategy seems to make the evaluation points

wonder around in early time periods without any clear trajectory, it will effectively reduce the scope

of exploration and concentrate around the optimal solution over time.

5 Conclusions

We study a nonparametric multi-product dynamic pricing problem with demand learning, and

formulate it as an online stochastic optimization problem. We propose a nonparametric KW pricing

policy, which is a variant of the classical KWSA algorithm, and show that the corresponding

expected cumulative regret is upper bounded by κ1

√
T + κ2 for all T = 1, 2, . . ., where κ1, κ2 are

positive constants and T is the number of time periods. Therefore, the KW pricing policy achieves

the optimal O(
√
T ) order of regret. Finally, we conduct numerical studies to study the performance

of the KW pricing policy and compare with other polices under various demand models.

There are some possible extensions of this work. First, the KWSA algorithm requires evaluating

d+1 points at each iteration, which may slow the algorithm significantly when the dimension is high.

When the dimension is high, i.e., there are many products whose prices need to be determined by

the decision maker, it would be better to use some other online optimization algorithms, such as the

simultaneous perturbation stochastic approximation (SPSA) algorithm of Spall (1992), to remove

the effect of the dimension. Second, there exist certain substitution or complementary effects among

different products, resulting in different correlation structures among different products. Then, how

to better utilize this type of correlation information to design dynamic pricing and learning policies

is another interesting research direction. Third, the market environments may change over time,

which may require a non-stationary optimal pricing strategy, then the non-stationary stochastic

optimization algorithms, e.g., the ones in Besbes et al. (2015) and Keskin and Zeevi (2016), may

be adopted to solve this type of problems.

Appendix

A Existence of λ of Equation (12)

Let α = 2γB1, β = γδB2

√
d and ω = 4dγ2M2

δ2
. By Equation (11), we have

bn+1 ≤
(

1− α

n

)
bn + βn−

5
4

√
bn + ωn−

3
2 . (17)
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Let λ = max{b1, λ0}, where

λ0 =

(
β +

√
β2 + 2ω(2α− 1)

2α− 1

)2

and, because 2α− 1 > 0, λ0 also satisfies

(2α− 1)κ− 2β
√
κ− 2ω ≥ 0, ∀κ ≥ λ0. (18)

We prove by induction that bn ≤ λn−
1
2 . It is easy to see that it holds for n = 1. For any

n = 1, 2, . . . , suppose that bn ≤ λn−
1
2 . Then, by Equation (17) and because 1 − α/n > 0 due to

α < 1,

bn+1 ≤
(

1− α

n

)
λn−

1
2 + β

√
λn−3/2 + ωn−

3
2

= λn−
1
2 −

(
αλ− β

√
λ− ω

)
n−

3
2

= λn−
1
2 − λ

2
n−

3
2 − 1

2

[
(2α− 1)λ− 2β

√
λ− 2ω

]
n−

3
2

≤ λ

(
n−

1
2 − 1

2
n−

3
2

)
, (19)

where the last inequality follows from Equation (18) and the fact that λ = max{b0, λ0} ≥ λ0. Let

g(x) = x−
1
2 . Then, g′(x) = −1

2x
− 3

2 . Notice that g(x) is convex. Then,

g(x′)− g(x) ≥ g′(x)(x′ − x).

Then,

(n+ 1)−
1
2 − n−

1
2 = g(n+ 1)− g(n) ≥ g′(n) = −1

2
n−

3
2 .

Therefore,

n−
1
2 − 1

2
n−

3
2 ≤ (n+ 1)−

1
2 .

Then, by Equation (19), we have bn+1 ≤ λ(n + 1)−
1
2 . This concludes the induction proof and,

therefore, bn ≤ λn−
1
2 for all n = 1, 2, . . . .

Acknowledgments

The authors would like to thank the Department Editor, Prof. Rene Caldentey, the Associate Editor

and two reviewers for their insightful and detailed comments that have significantly improved this

paper. This research of the first author was supported in part by the Hong Kong Research Grant

Council [GRF 11504017] and the Natural Science Foundation of China [Grant 71991473], and this

research of the third author was supported in part by the Natural Science Foundation of China

[Grants 71722006 and 71531010].

19



References

Agarwal A., Dekel O., Xiao L. (2010) Optimal algorithms for online convex optimization with

multi-point bandit feedback. In COLT, 28–40.

Agarwal A., Foster D., Hsu D., Kakade S., Rakhlin A. (2013) Stochastic convex optimization with

bandit feedback. SIAM Journal on Optimization, 23(1):213–240.

Aviv Y., Vulcano G. (2012) Dynamic list pricing. Özer Ö., Phillips R., eds. The Oxford Handbook
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