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Abstract In this paper, we briefly review the develop-
ment of ranking and selection (R&S) in the past 70 years,
especially the theoretical achievements and practical
applications in the past 20 years. Different from the
frequentist and Bayesian classifications adopted by Kim
and Nelson (2006b) and Chick (2006) in their review
articles, we categorize existing R&S procedures into fixed-
precision and fixed-budget procedures, as in Hunter and
Nelson (2017). We show that these two categories of
procedures essentially differ in the underlying methodolo-
gical formulations, i.e., they are built on hypothesis testing
and dynamic programming, respectively. In light of this
variation, we review in detail some well-known procedures
in the literature and show how they fit into these two
formulations. In addition, we discuss the use of R&S
procedures in solving various practical problems and
propose what we think are the important research questions
in the field.

Keywords ranking and selection, hypothesis testing,
dynamic programming, simulation*

1 Introduction

Decision-making processes often involve comparisons
among a set of alternatives regarding certain performance
measures. In this study, we consider such comparison
problems with the goal of selecting the best alternative,
where the best is defined to have the largest (or smallest)
mean performance. This aspect is not trivial in the
stochastic environment where the mean performances of
these alternatives are unknown and have to be inferred via
statistical sampling from stochastic systems. Therefore, a
selection procedure is required to determine how many
samples need to be collected from each alternative and then
which alternative should be selected as the best based on
the sample information. Such selection problems are often
called ranking and selection (R&S) in the literature.
R&S problems date back to the 1950s in agricultural and

clinical applications (Bechhofer, 1954; Gupta, 1956). At
that time, testing the homogeneity of multiple alternatives
was common (e.g., grain yields and drug treatments). For
instance, an individual might desire to test whether
multiple grains produced the same mean yield or whether
multiple drug treatments led to the same mean efficacy.
Once the homogeneity of their means was rejected
statistically, a natural issue readily arose, that is, which
one was the best. This issue was first proposed by Paulson
(1949) and triggered the early developments of R&S.
In the 1950s, samples needed to be collected through

physical experiments, e.g., agricultural experiments and
clinical trials, which might cost a long time to conduct.
Thus, the experiments were often conducted in batches.
Accordingly, a considerable number of the R&S proce-
dures designed then were stage-wise, where the best one
was selected at the end of the last stage. Starting in the
1990s, this paradigm began to change owing to the
increasing computing power. An increasing number of
experiments were conducted in computer simulation
environments because it cost little time to generate
samples. Through these simulations, samples were often
collected sequentially, especially when the program was
executed in a single-processor environment. This sequen-
tial nature boosted the development of sequential R&S
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procedures. Unlike stage-wise procedures, sequential
procedures typically provide a decision rule at each time
of the sample collection process and are therefore more
efficient in most situations by taking advantage of the
interim sample information. Sequential R&S procedures
are still prevalent today.
In recent years, another forming paradigm that considers

large-scale R&S problems has emerged. For early
applications, such as agricultural problems, the number
of alternatives was relatively small. Designed for these
applications, classic procedures were typically applied to
problems with fewer than 500 alternatives. However, in the
modern world, we often face problems that may have
thousands to tens of thousands of alternatives. For
instance, in scheduling problems, one may need to
determine multiple components simultaneously, such as
the jobs to be scheduled, the values assigned to the jobs,
and the time when the scheduling happens. Assuming that
50 choices are available for each component, their
combination fairly leads to a total of 125000 alternatives,
which is a huge number for classic R&S procedures.
Recently, research on how to handle large-scale R&S
problems has drawn significant attention. As pioneer
works, Luo and Hong (2011), Luo et al. (2015), and Ni
et al. (2013; 2017) addressed large-scale problems by
adapting the classic procedures into parallel computing
environments.
Interested readers may refer to Fu and Henderson (2017)

for introduction on the history of R&S. Basically, R&S
procedures provide a general tool for solving selection
problems. Therefore, they are widely applicable to
practical problems. Besides, many of the R&S procedures
are also easy to implement, and some of them have been
embedded in commercial simulation software packages,
such as Arena and Simio.
To organize the R&S procedures, existing review

articles often categorize them into frequentist and Bayesian
procedures according to the probability models used to
describe the collected samples (Chick, 2006; Kim and
Nelson, 2006b; Branke et al., 2007). In this work, we take a
different perspective and categorize them into fixed-
precision and fixed-budget procedures, as in Gabillon
et al. (2012) and Hunter and Nelson (2017). Particularly,
fixed-precision procedures intend to provide a desired
statistical guarantee of the selected alternative being the
best (or at least close to the best), while fixed-budget
procedures intend to allocate a given sampling budget in
various optimal or approximately optimal ways. To explain
these two categories of procedures, we show that they
essentially follow two different formulations, i.e., the
hypothesis-testing and dynamic-programming formula-
tions, respectively. A number of studies in the literature
have adopted the same perspective and designed new
procedures under the two formulations (Batur and
Choobineh, 2012; Peng et al., 2018). Different from

these works, the goal of this review is to construct a unified
framework for each formulation and explain how the
existing procedures fit in the framework.
This paper only focuses on selecting the best mean.

However, some related problems may also be categorized
into R&S problems. They essentially have different
combinations of goals to achieve and performance
measures used for comparisons. For instance, the goals
can be ranking all the alternatives, or selecting the top m
alternatives, or selecting a subset of alternatives that
contains the best. Meanwhile, the performance measures
used can be quantile or proportion. These problems are not
covered in this study, and interested readers may refer to
Bechhofer et al. (1995), Goldsman et al. (1998) and Kim
and Nelson (2006b) for comprehensive reviews.
One problem closely related to R&S is the multi-armed

bandit (MAB) problem in the machine learning literature.
Both problems stemmed from Bechhofer (1954) and
Paulson (1964), and they have grown into two branches
of research with different goals in designing procedures.
R&S procedures typically attempt to optimize the quality
of the final selection. In contrast, MAB procedures attempt
to balance the tradeoff between exploration (gathering new
information on different alternatives) and exploitation
(choosing the best alternative) in the sequential sampling
process. Therefore, the MAB problem often aims to
minimize cumulative regret during the sampling process.
Nonetheless, a series of works have considered the pure-
exploration version of the MAB problem, which is known
as the best-arm identification (BAI) problem (Bubeck and
Cesa-Bianchi, 2012). Although BAI and R&S problems
have the same goal, they typically make different
assumptions on the samples from alternatives. Particularly,
the BAI problem assumes the samples to be bounded or
sub-Gaussian distributed, whereas the R&S problem
typically assumes they are Gaussian distributed with
unknown variances. In this study, we will not review the
MAB procedures. Interested readers may refer to Even-Dar
et al. (2002), Bubeck and Cesa-Bianchi (2012), Gabillon
et al. (2012), and Kaufmann and Kalyanakrishnan (2013)
for more information on MAB and Ma and Henderson
(2017) and Glynn and Juneja (2018) for their connections
to R&S procedures.
The rest of paper is organized as follows. In Section 2,

we provide a comprehensive description on how R&S
problems under fixed-precision and fixed-budget are
formulated as hypothesis-testing or dynamic-programming
problems, respectively. In Sections 3 and 4, we present
several well-known fixed-precision and fixed-budget R&S
procedures and explain how they can be derived under two
different formulations, respectively. In Section 5, we
present the procedures designed for solving large-scale
R&S problems. In Section 6, we introduce several
emerging R&S problems, followed by the discussion of
some interesting future research directions in Section 7.
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2 Two formulations for R&S

Suppose that there are k≥ 2 alternatives with mean
performance μ ¼ ð�1, �2,:::, �kÞ, and the best alternative
is defined to have the largest mean. For simplicity, we
assume that the best alternative is unique. The goal of R&S
is to select the index of the best alternative, which is
unknown a priori. If multiple alternatives have tied best
means, choosing any of these alternatives as the best can be
viewed as a correct selection.
Evidently, the selection decision should be made based

on the information collected from samples. Ideally, we
hope to select the best alternative with 100% probability.
However, this is impossible unless infinite samples can be
collected. Therefore, a tradeoff exists between the
sampling budget and the precision of the selection
decision. To alleviate this tradeoff, R&S problems are
often imposed with two constraints: Fixed precision and
fixed budget (Hunter and Nelson, 2017). In particular, the
fixed-precision R&S problems intend to achieve a fixed
precision of selection when using as few sampling budget
as possible, while the fixed-budget R&S problems intend
to optimize the precision of the selection given a fixed
sampling budget.
In this section, we show that these R&S problems under

the two constraints can be formulated as hypothesis-testing
(HT) and dynamic-programming (DP) problems, respec-
tively. We also illustrate some key issues in designing
corresponding R&S procedures.

2.1 Fixed-precision R&S

To describe the precision of a selection (i.e., the first
constraint), one common way is to use the probability that
the selected alternative is the true best, which is called the
probability of correct selection (PCS). Then, under a fixed
precision 1 – α ð0 < α < 1 – 1=kÞ, the goal of R&S is to
deliver a PCS guarantee as,

PCSðμÞ ¼ PfSelect the best alternative j μg³1 – α,

8μ 2 Θ, (1)

where Θ ¼ fμ : �½k� > �½k – 1�g and �½k� > �½k – 1�³:::³�½1�
denote the ordered means.

2.1.1 Fixed-precision R&S formulated as
hypothesis-testing

Practically, any alternative may be selected as the best.
Then, the alternative must be assessed to determine
whether it is truly the best. This assessment suffices to
detect, for any alternative j, whether it has a larger mean
than all the others, i.e., �j > �i for any i≠j. Then, R&S
problems essentially involve k simultaneous HTs and are
therefore formulated as a multiple HT problem,

ðHTjÞ Hj
0 : �j£max

i≠j
�i versus

Hj
1 : �j > max

i≠j
�i, 8j ¼ 1; 2,:::, k: (2)

Each single HTj above regards the comparison between
alternative j and all the others.
When Hj

0 is rejected, alternative j should be selected as
the best. Therefore, to select the best alternative correctly,
we only need to avoid committing the Type II error for
eachHTj. To make it clear, notice that the PCS guarantee in
Eq. (1) can be rewritten as,

PCSðμÞ ¼ PfReject Hj
0 j μ 2 Hj

1g
¼ 1 – PfType II error in HTjg³1 – α,

for μ 2 Hj
1, 8j:

(For simplicity of the notation, we write μ 2 Hj
d   ðd ¼

0, 1Þ if μ satisfies the corresponding hypothesis) This
implies that we only need to control the Type II error for all
HTj in Eq. (2) as,

PfType II error in HTjg£α,

8μ 2 Hj
1, j ¼ 1; 2,:::, k: (3)

The Type I error for each HTj has been automatically
controlled at the same time. Taking the special case when
there are only two alternatives for example, when Eq. (2)
has two HTs, then the Type I error in one HT essentially
corresponds to the Type II error in the other. For the
general case, all Hj

1 ðj ¼ 1, 2,:::, kÞ compose a disjoint
partition of the whole mean space Θ. This partition
indicates that any mean vector μ satisfying Hj

0 must satisfy
one of Hl

1 ðl≠jÞ. Then, we are able to show,

PfType I error in HTjg£PfReject Hl
1 j μ 2 Hl

1g

¼ PfType II error in HTlg£α, if μ 2 Hl
1,

or equivalently,

PfType I error in HTjg£α,

8μ 2 Hj
0, j ¼ 1, 2,:::, k: (4)

Above all, we formulate the fixed-precision R&S
problem as a multiple HT problem in Eq. (2) and illustrate
that its precision (i.e., PCS guarantee in Eq. (1)) can be
delivered by controlling the Type II error for each single
HTj, as presented in Eq. (3).

2.1.2 The indifference-zone assumption

We next consider each HTj in Eq. (2) individually and
notice that its Type I and II errors need to be controlled
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either directly or indirectly as discussed in Section 2.1.1.
However, for a given set of samples, simultaneously
controlling both types of error probabilities might be
impossible. To show this, we connect these two error
probabilities via the power function of the test, i.e.,

βjðμÞ ¼ PfReject Hj
0 j μg

¼
PfType I error in HTjg, if �j£max

i≠j
�i

1 – PfType II error in HTjg, if �j > max
i≠j

�i

8<
: :

For most testing procedures, the power function βjðμÞ is
continuous with respect to μ. Then,

PfType I error in HTjg ¼ 1 –PfType II error in HTjg,

when �j ¼ max
i≠j

�i: (5)

Obviously, this equation conflicts with the constraints
stated in Eqs. (3) and (4). Therefore, the testing procedure
satisfying Eq. (3) may not exist. It further reveals that in
R&S problems, we may not be able to select the best with
the desired precision when the means are sufficiently close
to each other.
To overcome this obstacle, Bechhofer (1954) introduced

a so-called indifference-zone (IZ) parameter δ > 0, which
refers to the smallest mean difference worth detecting.
Given the IZ, the R&S problems are modified to select the
best alternative when all the inferior alternatives are
outside the IZ of the best. Accordingly, the PCS guarantee
in Eq. (1) is rewritten as,

PCS-IZðμÞ ¼ PfSelect the best alternative j μg³1 – α,

8μ 2 Θδ, (6)

where Θδ ¼ fμ : �½k� – δ > �½k – 1�g is called the IZ. Fol-
lowing the same logic in Section 2.1.1, this R&S problem
can be reformulated as a multiple HT problem, that is,

ðHT δ
j Þ Hj,δ

0 : �j þ δ£max
i≠j

�i versus H
j,δ
1 : �j – δ > max

i≠j
�i,

8j ¼ 1, 2,:::, k: (7)

We remark here that, for any mean vector μ 2 Θδ of

interest, either Hj,δ
0 or Hj,δ

1 is true, which ensures the test
above is well-defined.
Given the IZ parameter δ, the corresponding power

function is defined in two non-adjacent sets, i.e.,
fμ : �j þ δ£maxi≠j �ig and fμ : �j – δ > maxi≠j �ig.
This frees us from facing the adjacent point, at which the
Type I and II error probabilities cannot be controlled as
desired because their sum is forced to be one. Therefore,
in the presence of the IZ parameter, we can control both
types of errors for each HT δ

j or the Type II errors for

HT δ
j ðj ¼ 1, 2,:::, kÞ. Accordingly, the R&S problems

with PCS-IZ guarantee can also be tackled. In Section 3,
we will explain in detail how several representative R&S
procedures are derived along this line.

2.1.3 PCS and PGS

As stated in Section 2.1.2, the PCS guarantee in Eq. (1) is
difficult to deliver. Therefore, the IZ parameter is
introduced, and the R&S problems are restricted to a
smaller mean vector space. As a consequence, the PCS-IZ
guarantee in Eq. (6) is delivered whenever the best mean is
at least δ larger than the others. However, in practice,
several alternatives may have means that fall into the
indifference zone, and these alternatives are called good
alternatives. According to the definition of IZ, we should
be indifferent if one of these good alternatives is selected as
the best. Hence, we may care about the probability of good
selection (PGS) rather than the original PCS, where the
PGS guarantee is represented as,

PGSðμÞ ¼ PfSelect a good alternative j μg³1 – α,

8μ2Θ: (8)

In the area of multi-armed bandits, a good selection is
viewed as an approximately correct selection. Accordingly,
the PGS guarantee is also called the probably approxi-
mately correct (PAC) selection guarantee (Even-Dar et al.,
2006; Ma and Henderson, 2017).
Notice that for the R&S procedures with PCS-IZ

guarantee, it is natural to expect that they could also
deliver the PGS guarantee. Unfortunately, several counter-
examples have been provided (Eckman and Henderson,
2018a).
In the following, we attempt to explain this phenomenon

from the hypothesis-testing perspective. Similar to Section
2.1.1, to select a good alternative, it suffices to test, for any
given alternative j, whether it is a good alternative, i.e.,
�j þ δ > maxi≠j�i. Therefore, we formulate R&S pro-
blems with PGS guarantee as a multiple HT problem, that is,

ðHTG
j Þ Hj,G

0 : �jþδ£max
i≠j

�i

versus Hj,G
1 : �j þ δ > max

i≠j
�i, 8j: (9)

Suppose that a procedure with PCS-IZ guarantee of Eq. (6)
exists, and we want to know whether it can deliver the PGS
guarantee in Eq. (8). According to the previous analysis, an
easy way is by checking the Type II error constraints
presented in Eq. (3). In Table 1, we summarize the R&S
problems with different probability guarantees and their
corresponding HT formulations. Table 1 shows that

Hj,G
0 ¼ Hj,δ

0 . However, Hj,G
1 refers to a larger mean vector

space than Hj,δ
1 . Therefore, the Type II error probability in
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HTG
j may not satisfy Eq. (3) even though it is satisfied in

HT δ
j . In other words, the PGS guarantee cannot be

guaranteed. To overcome this drawback, Eckman and
Henderson (2020) constructed several sufficient conditions
under which the PCS-IZ guarantee can imply the PGS
guarantee.
On the opposite side, Table 1 depicts that the PGS

guarantee implies the PCS-IZ guarantee. Thus, interest has
recently emerged in developing the procedures with the
PGS guarantee (Fan et al., 2016; Eckman and Henderson,
2018a).

2.2 Fixed-budget R&S

In this section, we consider the R&S procedures under a
fixed sampling budget. By its nature, one can always select
the alternative with the largest sample mean as the best
when the sampling budget is exhausted. Therefore, the key
issue here is how to allocate the budget efficiently. When
the allocation can be made multiple times, one effective
method is to re-determine the allocation adaptively at each
stage based on the sampling information collected so far.
Thus, a dynamic-programming (Bellman, 1966; Bertsekas,
1995) formulation looks proper to derive an optimal
allocation policy.
Under the DP formulation, R&S problems turn into

finding a sequence of sampling allocation decisions to
optimize the precision of the final selection. Besides the
PCS used in Section 2.1, another popular measure to
describe the precision of selection is the expected
opportunity cost (EOC). In fact, the PCS is related to the
so-called 0–1 loss, i.e., only a correct selection acquires a
reward, while the EOC describes the precision of selection
by its opportunity cost. Particularly, when the EOC is used,
a non-best selection also obtains a reward proportional to
the discrepancy in the mean from the best one, which
corresponds to a linear loss function. Instead of focusing
on the final selection, some researchers have chosen to
optimize the way information has been collected, e.g., by
maximizing the expected value of information (EVI)
collected at each stage.

2.2.1 Fixed-budget R&S formulated as
dynamic-programming

Suppose that a total sampling budget N is allocated to the k
alternatives progressively along T stages, each endowed

with a budget of τ ¼ N=T (in the special case when τ ¼ 1,
the samples are allocated one by one.). We assume that the
τ samples are collected according to some sampling
allocation policy at each stage t ðt ¼ 1, 2,:::, TÞ, termed
by πt. The information about the alternatives is revealed
gradually along the sequential sampling. To track the
process, we denote E0 as the initial information on the
alternatives and E t as the information collected up to the
end of stage t, for t ¼ 1, 2,:::, T . The inter-stage updating
rule of the information can be defined by a transition
function ft, i.e., E t ¼ ftðE t – 1, πt, ξ tÞ, where ξ t refers to the
randomness of the samples collected at stage t. After the
final stage, the selection decision is made based on all the
information (i.e., ET ) that is collected.
Let V ðET Þ denote the terminal value function we want to

optimize. For instance, when our objective is to minimize
the probability of incorrect selection (i.e., 1 – PCS), the
value function can be set as the 0–1 function, which is 1 if
the selected alternative is not the best and 0 otherwise.
Then, the R&S procedures are formulated as a DP, which
is,

min
π

Eπ½V ðET Þ�, (10)

where the decision is a sequence of allocation policies, i.e.,
π ¼ ðπ1, π2,:::, πT Þ. In the literature, the DP problem is
often handled recursively through the associated Bellman
equation,

V *
t ðE tÞ ¼ min

πtþ1

E½V *
tþ1ðE tþ1Þ�,

t ¼ T – 1, T – 2,:::, 0, (11)

where the value function V *
t ðE tÞ defines the optimal

expected cost-to-go from current stage t to the terminal and
the terminal cost V *

T ðET Þ ¼ V ðET Þ.
Notice that the Bellman equation builds the relationship

between the value functions in the current and next stages.
As a consequence, the original DP is broken into a series of
static optimization problems although in a stage-by-stage
and recursive form. However, in practice, the Bellman
equation is typically difficult to solve, and the difficulty is
illustrated as follows. To solve the Bellman equation, the
next-to-terminal cost-to-go V *

tþ1ðE tþ1Þ in Eq. (11) has to be
calculated by backward iterations. Unfortunately, these
calculations tend to be increasingly difficult, as the number
of stages increases due to the “curse of dimensionality”. In
Section 4, we will explain in detail how existing studies

Table 1 R&S problems and their HT formulations

Goal of R&S Means HT formulations

PCS �½k� > �½k – 1� Hj
0 : �j£maxi≠j �i v:s: Hj

1 : �j > maxi≠j �i, 8j
PCS-IZ �½k� – δ > �½k – 1� Hj,δ

0 : �j þ δ£maxi≠j �i v:s: Hj,δ
1 : �j – δ > maxi≠j �i, 8j

PGS �½k� > �½k – 1� Hj,G
0 : �j þ δ£maxi≠j �i v:s: Hj,G

1 : �j þ δ > maxi≠j �i, 8j
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have resolved this problem and obtained the corresponding
sample allocation rules (or R&S procedures).

2.2.2 Consistency of fixed-budget procedures

With a fixed sampling budget, the DP R&S procedures
provide no probability guarantee on the correctness of the
selection. Alternatively, they usually process another
appealing property of consistency. A procedure is said to
be consistent if its selected alternative converges to the true
best as the total budget goes to infinity.
The consistency of a DP procedure is generally difficult

to show directly. As long as all the alternatives receive
infinite sampling budget in the limit, we will always have
the exact information on the ranking of their true means to
select the best correctly. Hence, asymptotically infinite
samples on all the alternatives often work as a sufficient
condition to verify the consistency of a procedure in the
literature.

2.3 Connection to the frequentist and Bayesian
formulations

Before this paper, the R&S procedures under fixed-precision
and fixed-budget were often classified into the frequentist
and Bayesian procedures in the literature (Kim and Nelson,
2006b). The main reason is that the precision of a selected
alternative or generally the value function in DP is often
described under the corresponding frequentist or Bayesian
probability models. However, some exceptions exist. For
instance, Frazier (2014) proposed a R&S procedure with a
PCS guarantee under a Bayes-inspired framework, and
Chen et al. (2000) suggested a R&S procedure with a fixed
budget under a frequentist framework.
Moreover, given that the R&S problems under fixed-

precision can be formulated as a hypothesis test, any
testing rule, frequentist or Bayesian, can ideally be used to
derive the corresponding R&S procedures. Similarly, more
sample allocation (or R&S) procedures can be derived
under either a frequentist or Bayesian framework for the
R&S problems under a fixed sampling budget. Therefore,
in our view, R&S procedures can be properly classified
based on their underlying methodological formulations
(i.e., HT or DP).

3 Fixed-precision procedures

Considering the fixed-precision constraint, most of the
existing R&S procedures are designed under the IZ
formulation and deliver the PCS-IZ guarantee in Eq. (6).
These procedures are often called IZ procedures. Follow-
ing the discussion in Section 2.1, we will first show in
detail how the stage-wise and sequential IZ procedures are
derived by addressing the corresponding HT problem in
Eq. (7). Then, we move to the newly designed IZ-free

procedure, which is able to deliver both the PCS and PGS
guarantees.
Before moving to the next part, we first set up some

notations. Let Xij denote the j th observation from
alternative i, for i ¼ 1, 2,:::, k and j ¼ 1, 2, ::: Unless
specifically stated, we assume these observations are
independent across alternatives and fXij : j ¼ 1, 2, :::g
are independent and identically distributed (i.i.d.) Gaussian
distribution with mean �i and variance �2

i . Let X iðnÞ and
S2i ðnÞ denote, respectively, the sample mean and sample
variance calculated based on the first n samples from
alternative i.

3.1 Stage-wise R&S procedures

We start by deriving Bechhofer’s procedure (Bechhofer,
1954), which is probably known as the first R&S
procedure in the literature. It considers a special case
where the variances across all alternatives are common and
known, i.e., �2

1 ¼ �22 ¼ ::: ¼ �2k ¼ �2, and the goal is to
deliver the PCS-IZ guarantee. In this case, one natural
procedure for its corresponding HT problem in Eq. (7)

works as follows: for j ¼ 1, 2,:::, k, reject Hj,δ
0 ði:e:,

select alternative jÞ, if X jðnÞ–maxi≠j X iðnÞ³z, and accept

Hj,δ
0 otherwise. Here, the constant z and the common

sample size n of all alternatives need to be carefully
chosen.
Only a single alternative is expected to be returned as the

best. Straightforwardly, it occurs if only one Hj,δ
0 is

rejected. This suffices to require that the rejection regions

for Hj,δ
0 ðj ¼ 1, 2,:::, kÞ compose the disjoint partition of

the whole space ℝkþ. One way to achieve this goal is setting
z ¼ 0. In doing so, the alternative with the largest sample
mean is selected as the best. Moreover, the common
sample size n is chosen such that the Type II error
probability for each HT δ

j satisfies Eq. (3), and specifically,

PfType II error in HT δ
j g

¼ P X jðnÞ – max
i≠j

X iðnÞ < 0 j Hj,δ
1

� �

¼ P max
i≠j

ffiffiffi
n

p
X iðnÞ –X jðnÞ – ð�i –�jÞ
� �

ffiffiffiffiffiffiffiffi
2�2

p >

�

– max
i≠j

ð�i –�jÞ
ffiffiffiffiffiffiffiffi
n

2�2

r j Hj,δ
1

�

£P max
i≠j

Zi > δ

ffiffiffiffiffiffiffiffi
n

2�2

r� �
£α, (12)
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where Zi ði≠jÞ is a ðk – 1Þ-dimensional multivariate
Gaussian random variable with means 0, variances 1,
and common pairwise correlations 1/2. Let h denote the
ð1 – αÞ quantile of the maximum of Zi   ði≠jÞ. The
common sample size n is chosen as,

n ¼ 2h2�2

δ2

� �
, (13)

where dxe denotes the smallest integer no smaller than x.
Following the testing procedure above, a R&S proce-

dure can be constructed. It first determines the common
sample size allocated to each alternative as Eq. (13). Then,
it selects the alternative with the largest sample mean as the
best. This is exactly Bechhofer’s procedure.
Regarding Bechhofer’s procedure, we make two

remarks here.
(i) From Eq. (12), we see that the worst-case of Type II

error probabilities is attained when the best mean is exactly
δ better than all the others, i.e., �½k� – δ ¼ �½k – 1� ¼ ::: ¼
�½1�. Thus, this configuration of means is the most difficult

situation in Θδ, and Bechhofer (1954) named it the least
favorable configuration (LFC) of means.
(ii) Bechhofer’s procedure is also able to deliver the PGS

guarantee in Eq. (8). To verify this statement, we only need
to prove that the Type II error constraint in Eq. (3) can be
achieved while applying the procedure to address the HTG

j

for all j. This proof is easily accomplished and therefore
omitted in this study.
Rinott (1978) extends Bechhofer’s procedures to the

situation where the variances across alternatives are
unknown and unequal. To handle this situation, Bechho-
fer’s procedure is modified in three aspects. First, an initial
stage is included in which a small number of samples are
generated to estimate the unknown variances. Second, the
total sample sizes allocated to each alternative are not the
same any more but are set to be positively proportional to
its sample variance. Third, the constant hR in the total
sample size Ni needs to be modified accordingly. Finding
this constant needs to solve a root-find problem with
integration, i.e.,

!
1

–1Ψk – 1
n0 – 1ðt þ hRÞψn0 – 1ðtÞdt ¼ ð1 – αÞ,

where Ψn0 – 1 and ψn0 – 1 denote the cumulative distribution
function and probability density function of a standard
student-t distribution with n0 – 1 degrees of freedom,
respectively. Historically, given the limited computational
capacity, it is considered difficult to solve; hence, tables are
provided (Wilcox, 1984; Bechhofer et al., 1995; Goldsman
et al., 1998). The new two-stage procedure (named as the
Rinott’s procedure) is presented as follows.

As the simplest and most popular IZ procedure, there are
a lot of variations of Rinott’s procedure. For instance, to
avoid the complexity in calculating hR, some procedures
(Clark and Yang, 1986) adopt Bonferroni’s inequality and
set it approximately as the 1 – α=ðk – 1Þ quantile of a
t-distribution with n0 – 1 degrees of freedom (Banerjee,
1961). As a price, it often leads to more conservativeness,
which means that a larger sample size is needed for the
procedure. Another variation of Rinott’s procedure worth
mentioning is the use of common random numbers (CRNs)
(Clark and Yang, 1986; Nelson andMatejcik, 1995). CRNs
artificially introduce a positive correlation between the
observations from each pair of alternatives, thus decreasing
the variance of their sample mean difference. In doing so,
the R&S process becomes much easier, and the sample size
required is ultimately reduced.

3.2 Sequential R&S procedures

Paulson’s procedure is one of the early sequential R&S
procedures, and this subsection will start from re-deriving
this procedure from the hypothesis-testing perspective.
Same as Bechhofer’s procedure, Paulson’s procedure also
considers the special case with common and known
variances, i.e., �2

1 ¼ �2
2 ¼ ::: ¼ �2

k ¼ �2.
Similar to Section 3.1, we first consider each HT δ

j

individually and our task is to design a sequential testing
procedure for it. However, such sequential procedure is not
trivial because it involves multiple pairwise comparisons
between alternatives. As a remedy, we break down HT δ

j

into a group of HT problems, each of which considers a
pairwise comparison between alternative j and one of the
other alternatives. Particularly, HT δ

j is decomposed into:

ðHT δ
jiÞ Hji,δ

0 : �j þ δ£�i

versus Hji,δ
1 : �j – δ > �i, 8i≠j: (15)

Procedure 1 Rinott’s procedure

Require: Number of alternatives k, common first-stage sample size n0³2,
PCS 1 – α, IZ parameter δ, and a constant hR

1: Generate n0 samples for each alternative i, and calculate the sample

variance S2i ðn0Þ
2: for i←1 : ndo

3: Let

Ni←max n0,
h2RS

2
i ðn0Þ
δ2

� �� �
, (14)

4: Generate Ni – n0 samples from alternative i, and calculate the sample mean
X iðNiÞ
5: end for

6: Select argmaxi¼1, 2,:::, k X iðNiÞ as the best
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Meanwhile, to control the Type II error in HT δ
j at most α as

desired in Eq. (3), we adopt Bonferroni’s inequality and
require:

PfType II error in HT δ
jig£α=ðk – 1Þ, 8i≠j: (16)

A sequential procedure for HT δ
ji is noticeably easy to obtain

while satisfying Eq. (16), and a vast volume of literature
supports it. Specifically, we may use Wald’s sequential
probability ratio test (SPRT) (Wald 1945; 1947), which,

rejects Hji,δ
0 , if n X jðnÞ –X iðnÞ

	 

³a – ln,

accepts Hji,δ
0 , if n X jðnÞ –X iðnÞ

	 

£ – aþ ln,

and continues to take samples otherwise. Here, 0 < l < δ

and a is chosen as a ¼ ln
k – 1

α

� �
�2

δ – l
.

The original R&S problem is reformulated as kðk – 1Þ
simultaneous HT problems, i.e., HT δ

ji , for j≠i. Each HT δ
ji

considers that the pairwise comparison between alterna-
tives j and i is resolved by a sequential procedure as
mentioned above. Intuitively, at any time of the sampling
process, we should select alternative j as the best if all the

Hji,δ
0   ði≠jÞ are rejected. We eliminate alternative j from

consideration if one of the Hji,δ
0   ði≠jÞ is accepted.

Otherwise, we continue to take samples. Once an
alternative is eliminated, we should stop taking samples
from this alternative and abandon all the HT δ

ji regarding it.
For clarity, IðnÞ denotes the set of surviving alternatives
right before stage n. Then, a sequential procedure is
designed as,

selecting alternative j, if n X jðnÞ –X iðnÞ
	 


³a – ln,

8i 2 IðnÞ and i≠j,

eliminating alternative j, if n X jðnÞ –X iðnÞ
	 


£ – aþ ln,

9i 2 IðnÞ and i≠j:

It continues to take samples from the surviving alternatives
otherwise. This sequential procedure is known as Paul-
son’s procedure.
Kim and Nelson (2001) extended Paulson’s procedure to

the case of unknown and unequal variances. Similar to the
previous two-stage procedures, Kim and Nelson’s (KN )
procedure also uses an additional initial stage of sampling
to estimate the unknown variances. After the variances are
estimated, it then starts screening alternatives just as
Paulson’s procedure does. In addition, replacing Paulson’s
bound by a tighter bound of Fabian (1974) and considering
the estimated variances that are random variables, the KN
procedure re-assigns the values of l and a to ensure the
same PCS guarantee. The detailed KN procedure is
presented in Procedure 2.

An intuitive way to understand the KN procedure is
presented in Fig. 1. For each pair of alternatives j and i, it
constructs the partial-sum process of their mean difference
n X jðnÞ –X iðnÞ
	 


: n ¼ 1, 2, :::
 �

. At each stage n, KN
checks whether this partial-sum process exits from the
triangular region and makes decisions accordingly.

The KN procedure has numerous variations, and this
family of procedures is shown to be effective among IZ
procedures (Kim and Nelson, 2006b; Branke et al., 2007).
All these variations are classified into two categories. The
first category intends to enhance the efficiency of the KN
procedure. For instance, Hong (2006) designed a variance-
dependent sampling rule. Moreover, Tsai and Nelson
(2009) and Tsai et al. (2017) adopted the control-variates
technique. In another study, Nelson et al. (2001) took
advantage of the first-stage samples to screen out
alternatives that are unlikely to be the best. The second
category intends to address different practical situations.

Procedure 2 KN procedure

Require: Number of alternatives k, common first-stage sample size n0³2,
PCS 1 – α, IZ parameter δ, and a constant h

1: Set η ¼ 1

2

2α
k – 1

� � – 2=ðn0 – 1Þ
– 1

" #

2: I←f1; 2,:::, kg, h2 ¼ 2ηðn0 – 1Þ, n←n0
3: Generate n0 samples to each alternative j and calculate X iðn0Þ. For i, j 2 I ,

S2ji ¼
1

n0 – 1

Xn0
l¼1

Xjl –Xil – X jðn0Þ –X iðn0Þ
	 
� �2

4: while jI j > 1 do

5: Set Wji ¼ max 0,
δ
2n

h2S2ji
δ2

– n

 !( )
and

I← j : j 2 I and X jðnÞ –X iðnÞ³ –WjiðnÞ, 8i 2 I , i≠j
 �

6: Take an additional observation from each alternative j 2 I , and set n←nþ1

7: end while

8: Select the alternative in I as the best

Fig. 1 Triangular region for the KN procedures.
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For instance, Hong and Nelson (2005) considered the cost
of switching between alternatives to take samples and
designed a new procedure to balance the tradeoff between
sampling and switching costs. In a follow-up study, Hong
and Nelson (2007b) noticed a situation where alternatives
may be revealed sequentially, thus designing a new
procedure for this situation. Meanwhile, Kim and Nelson
(2006a) studied the steady-state experiments and designed
a new procedure achieving the PCS guarantee asympto-
tically.

3.3 Indifference-zone-free R&S procedures

In Sections 3.1 and 3.2, we have seen how the IZ formulation
(i.e., μ 2 Θδ ¼ fμ : �½k� – δ > �½k – 1�g) helps to achieve the
PCS guarantee. However, the problem remains on whether a
R&S procedure with the PCS guarantee can be developed for
all possible mean vectors in Θ.
To solve this problem, Fan et al. (2016) proposed an IZ-

free procedure. We call it the FHN procedure and present it
as Procedure 3. Similar to the KN procedure, it decom-
poses a R&S problem into a group of pairwise compar-
isons and designs a procedure for each pairwise
comparison. When μ 2 Θ, the pairwise mean differences
might be arbitrarily close to zero. Then, the desired
procedure is intended to detect whether these mean
differences are zero or not. Motivated by the law of
iterated logarithm, this IZ-free procedure adopts a new
continuation region whose boundary function grows to
infinity at a rate between Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nlog log n
p Þ and OðnÞ. For

instance, a boundary function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½cþ logðnþ 1Þ�ðnþ 1Þp

is
used, as shown in Procedure 3.

Now, we illustrate from the HT perspective why this IZ-
free procedure is able to achieve the PCS guarantee in

Eq. (1). As mentioned in Section 2.1.2, the challenge for
the conventional IZ procedures is how to control the Type I
and II errors in each HTj simultaneously when the second-
best mean is arbitrarily close to the best. Specifically,
Eq. (5) shows that we might lose such control at the point
μ0 with �0

j ¼ maxi≠j �
0
i , which is caused by the continuity

of the power function. The FHN procedure resolves this
challenge by forcing its power function βjð⋅Þ to be

discontinuous at μ0.
The FHN procedure addresses HTj   ðj ¼ 1, 2,:::, kÞ by,

rejecting Hj
0, if tjiðnÞ X jðnÞ –X iðnÞ

� �
³g
�
tjiðnÞ

�
,

8i 2 IðnÞ and i≠j,

accepting Hj
0, if tjiðnÞ X jðnÞ –X iðnÞ

� �
£ – g

�
tjiðnÞ

�
,

9i 2 IðnÞ and i≠j,

and continues sampling otherwise. Here IðnÞ denotes the
set of surviving alternatives right before stage n. Then, a
careful derivation yields that,

βjðμÞ³1 – α, for μ with �j > max
i≠j

�i,

and  βjðμÞ£α, for μ with �j£max
i≠j

�i,

thereby demonstrating a discontinuous power function
βjðμÞ. The inequalities above also show that the FHN
procedure satisfies the constraints of error probability in
Eqs. (3) and (4), thus implying that the desired PCS
guarantee in Eq. (1) can be achieved.
Fan et al. (2016) also extended the FHN procedure to

incorporate an IZ parameter when it is available.
Particularly, a stopping condition based on the IZ
parameter is embedded into the original FHN procedure.
The new procedure is shown to be able to achieve not only
the PCS guarantee in Eq. (1), but also the PGS guarantee in
Eq. (8).

4 Fixed-budget procedures

In this section, we review the existing fixed-budget R&S
procedures related to the DP formulation. With a fixed
sampling budget, the main task of R&S procedures is to
determine a sample allocation policy, which is formulated
as a DP problem in Eq. (10) as introduced in Section 2.2.
This DP problem is essentially a finite-horizon stochastic
DP and can be solved exactly in principle by backward
induction through Bellman equation of Eq. (11). However,
this exact procedure is often impossible to execute due to
the curse of dimensionality. This limitation motivates the
researchers to consider the suboptimal solutions generated

Procedure 3 FHN procedure

Require: Number of alternatives k, common first-stage sample size n0³2,
and PCS 1 – α

1: Set c ¼ – 2log
2α
k – 1

� �

2: I←f1; 2,:::, kg, n←n0
3: Generate n0 samples to each alternative j, and calculate X jðn0Þ. For i, j 2 I ,

S2jiðn0Þ ¼
1

n0 – 1

Xn0
l¼1

Xjl –Xil – X jðn0Þ –X iðn0Þ
	 
� �2

4: while jI j > 1 do

5: Set tjiðnÞ ¼ n=S2jiðnÞ and
gji
�
tjiðnÞ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ log

�
tjiðnÞ þ 1

�h i�
tjiðnÞ þ 1

�r
, and

let I← j : j 2 I and tjiðnÞ X jðnÞ –X iðnÞ
� �

³ – gji
�
tjiðnÞ

�
, 8i 2 I , i≠j

n o
6: Take an additional observation from each alternative j 2 I , and set n←nþ1

7: end while

8: Select the alternative in I as the best
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by easily implementable approximation procedures. In
particular, all the procedures reviewed in this section can
be regarded as approximate dynamic programming (ADP)
procedures.

4.1 Static-allocation based procedures

As a practically acceptable DP procedure is impossible to
obtain, one possible approach would be developing a good
heuristic procedure instead. Intuitively, a superior DP
procedure “optimizes” the way of collecting information
about the mean of each alternative. Hypothetically, if we
have perfect information at the beginning but still have to
make a selection based on the samples, a simple static
allocation policy that maximizes the precision of the
selection will be proper. For example, assuming that the
precision of selection is measured by the PCS guarantee in
Eq. (1), the optimal allocation policy can be determined by
solving the following static optimization problem:

max
n½1�þ:::þn½k�¼N

P X ½k�ðn½k�Þ > max
½j�≠½k�

X ½j�ðn½j�Þ
� �

, (17)

where n½i� denotes the sample size allocated to alternative
½i�, for i ¼ 1, 2,:::, k.
Based on the static allocation policy, several procedures

have been developed. The optimal computing budget
allocation (OCBA) procedure initiated by Chen (1996) and
Chen et al. (2000) is among the most famous static-
allocation-based procedures. Moreover, the OCBA proce-
dure has also been extended to sequential settings, and the
basic idea is to approximate the static allocation policy
dynamically based on the sample information.
Taking the sequential algorithm of OCBA proposed by

Chen et al. (2000) as an example, a total budget of N is
allocated to T stages sequentially with each stage
endowed with τ ¼ N=T . Perfect information is assumed in
developing the OCBA procedure at first. Particularly,
it assumes the information given at stage t as
E t ¼ fð�j, �

2
j Þ, j ¼ 1, 2,:::, kg for 0£t£T . For any

intermediate stage t, the allocation policy is determined
by a static allocation problem as of Eq. (17), in which the
budget for the first t stages are reallocated for a myopic
objective of maximizing PCS as if the selection is made at
the end of the current stage.

VOCBA
t ðE tÞ ¼ max

n½1�,tþ:::þn½k�,t¼τt
P X ½k�ðn½k�,tÞ> max

½j�≠½k�
X ½j�ðn½j�,tÞ

� �
:

Here, n½i�,t is the total sample size that is allocated to
alternative ½i� up to the end of stage t, for i ¼ 1, 2,:::, k and
t ¼ 1, 2,:::, T . The allocation rule is then derived by
approximating the PCS with Bonferroni’s inequality and

letting the budget per stage go to infinity. The resulting
allocation rule is presented in Step 5 in Procedure 4.
Moreover, using the large deviation theory, Glynn and

Juneja (2004) derived the asymptotic optimal allocation
policy for Eq. (17) that maximizes the exponential decay
rate of the probability of incorrect selection as N ↕ ↓1.
Specially, they showed that the optimal allocation satisfies:

n*½i�
n*½j�

� �2½i�=ð�½k� –�½i�Þ2
�2½j�=ð�½k� –�½j�Þ2

, for ½i�≠ j½ �≠ k�,½

and    n*½k� ¼ �½k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
½j�≠½k�

n*½j�
�½j�

 !2
vuut : (18)

This equation provides a theoretical benchmark on the
optimality of static allocation policy. Careful investigation
reveals that the optimal allocation coincides with the one in
the OCBA procedure. Thus, the OCBA policy is
asymptotically efficient.
In practice, we do not have perfect information about the

means and variances of the alternatives, and the OCBA
procedure suggests to use sample estimates instead based
on the available data at the beginning of each stage (see
Step 4).
Some variations of the above OCBA procedure have

been proposed. He et al. (2007) adopted the linear loss
function to measure the quality of the selection and
designed an OCBA-type procedure; Gao et al. (2017a) also
considered the case of linear loss function but designed an
OCBA-type procedure based on the large-deviation
theory; Branke et al. (2007) addressed the issue of

1) Most of DP procedures are described as Bayesian procedures. Therefore, they are used to represent random variables with upper-case letters and their
observations with lower-case letters. To keep in line with the existing literature, we use x in Section 4 to denote the observation of the sample mean.

Procedure 4 OCBA procedure

Require: Number of alternatives k, common first-stage sample size n0³5,
total sampling budget N , and sampling budget τ per stage

1: Generate n0 samples from each alternative i

2: Set t←0, ni,t←n0, bt←
Xk

i¼1
ni,t

3: while bt < N do

4: Update the sample mean xi
1) and the sample variance �̂2i ; ðkÞ←argmaxi xi

and dðiÞðkÞ←xðkÞ – xi

5: Set btþ1←bt þ τ. Calculate the new budget allocation n1,tþ1, n2,tþ1,:::,

nk,tþ1 satisfying
X

i
ni,tþ1 ¼ btþ1 according to

ni,tþ1

nj,tþ1
¼ �̂i=dðiÞðkÞ

�̂j=dðjÞðkÞ

 !2

, for

i≠j≠ðkÞ and nðkÞ,tþ1 ¼ �̂ðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i≠ðkÞn
2
i,tþ1=�̂

2
i

q
6: Generate maxf0, ni,tþ1 – ni,tg samples from each alternative i. Set t←t þ 1

7: end while

8: Select argmax xi as the best
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unknown variances and proposed to use student-t approx-
imation; Peng et al. (2018) directly approximated the
objective function in Eq. (17) using some feature
functions; moreover, Fu et al. (2007) considered the case
of correlated samples across alternatives and showed that
the optimal policy agrees with that of the independent case
as the correlation vanishes.

4.2 Two-stage approximation based procedures

Static-allocation-based procedures like OCBA are develo-
ped by assuming that the means and variances are known.
In addition, these procedures use the corresponding sample
estimators to replace the unknown parameters in practical
implementations. In contrast, another stream of research
takes account of the unknown means and variances in
developing the procedures. These procedures often contain
two stages, which include a first-stage sampling to collect
some information about the unknown parameters and then
use the information to guide the second-stage allocation
decision.
As a representative, we shall review one famous two-

stage procedure proposed by Chick and Inoue (2001),
which is known as the expected value of information (EVI)
procedure. In particular, we consider the one with linear
loss and a budget constraint, namely, Procedure LLðBÞ.
The procedure adopts the Bayesian approach for updating
the information collected about the mean performance of
any alternative i, which is assumed to be a random variable
Wi. At the first stage, it takes n0 samples from alternative i
and computes the sample means and variances xi,0, �̂

2
i,0

	 

.

By Bayes’ rule, it indicates the prior distribution of
Wi � St xi,0, n0=�̂

2
i,0, n0 – 1

	 

, where Stð�, κ, �Þ denotes

the student-t distribution with mean �, precision κ, and
degrees of freedom �. If additional ni – n0 samples are
allocated to alternative i and the overall sample mean and
variance are xi, �̂

2
i

	 

, then the posterior distribution Wi

becomes St xi, ni=�̂
2
i , ni – 1

	 

. The final selection will go

to the alternative with the largest sample mean, i.e.,
ðkÞ ¼ argmaxi xi. A false selection will incur a linear loss,
which is maxi Wi –WðkÞ. Therefore, the problem for the
second stage is to choose ðn1, n2,:::, nkÞ to minimize the
expected linear loss1), i.e.,

min
n1þn2þ:::þnk¼N

E E max
i

Wi –WðkÞ   jðX1, X2,:::, XkÞ
� �� �

:

(19)

Notice that ðn1, n2,:::, nkÞ are determined before the
second stage. Therefore, to calculate the expected linear
loss, we need to take the expectation with respect to the
second-stage samples ðX1, X2,:::, XkÞ, which are random.
As the problem in Eq. (19) has no closed-form solution,

Chick and Inoue (2001) derived their allocation policy by
asymptotically minimizing a bound of the expected loss.
Chick and Inoue (2001) then adapted this two-stage

procedure to the dynamic setting. At each intermediate
stage t, a set of observations is collected from each
alternative in the previous stages, based on which the
current-stage allocation policy needs to be determined.
This issue is essentially what the two-stage procedure
above attempts to address. Therefore, this allocation policy
should be determined by applying the two-stage procedure.
Particularly, a myopic perspective is taken as if the
selection is made at the end of stage t, and the current-stage
allocation policy is then obtained by solving Eq. (19),

VEVI
t ðE tÞ ¼ minP

i
ni,t¼
P

i
ni,t – 1þτ

E½E½max
i

Wi –WðkÞ  

  jðX1,t, X2,t,:::, Xk,tÞ��, (20)

where Xi,t denotes the random samples that will be taken at
stage t. The extension from the above two-stage procedure
to a sequential procedure encounters an obstacle, which is
caused by the unbalanced samples from different alter-
natives. Technically, it involves the subtraction of two
student-t random variables with different degrees of
freedom. Chick and Inoue (2001) overcame this difficulty
by using the Welch approximation.
The process is documented in Procedure 5, where we

assume the sampling cost from each alternative is the same
and set as one. The optimal sampling allocation policy in
Step 6 looks very similar to that of the OCBA procedure
(Step 5 in Procedure 4) because these two procedures are
derived in a similar way as mentioned before.
In the same work, Chick and Inoue (2001) also

considered the problem with unconstrained budget. Thus,
they proposed an EVI procedure to determine the number
of replications to balance the replication costs against the
reduction in the expected opportunity cost. They also
presented analogous procedures with the 0–1 loss function.
Chick et al. (2010) developed a variation of the EVI
procedure in which the sampling budget is allocated to
only one alternative at each stage. For this special case,
they showed that most of the approximations in solving
this optimal allocation policy can be avoided and therefore
derived a procedure with better performance, especially in
the small-budget problems.

4.3 One-step look-ahead procedures

In this section, we review the group of DP procedures that
are derived using the one-step look-ahead approximation.
Specifically, we consider the knowledge-gradient (KG)
procedure proposed by Frazier et al. (2008).
The KG procedure also adopts a Bayesian approach to

1) In the original paper of Chick and Inoue (2001), they also considered the sampling cost, which results in an additional linear term in the objective function.
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solve the R&S problem. Unlike the EVI, it determines the
optimal sampling allocation policy by maximizing the
expected terminal reward. Suppose that there is a budget of
N samples for selecting the best from k alternatives, and
information collected from the samples is summarized in
the posterior distribution of the unknown mean for each
alternative. In such case, �t

i and ð�t
iÞ2 are the mean and

variance of the posterior distribution for alternative i,
respectively, after observing the first t samples. Then, the
problem is to determine the allocation of the ðt þ 1Þth
sample ztþ1 2 f1, 2,:::, kg for t ¼ 0, 1,:::, N – 1, in order
to maximize the expected terminal reward E½maxi�

N
i jEN �,

and the alternative with the largest �N
i is selected as the

best. Here, the information set E t records the posterior
mean and variance after the tth sample and is updated
according to the Bayes rule.
From the view of dynamic-programming formulation,

we solve:

VKG
t ðE tÞ ¼ max

ðztþ1, ::: , zN Þ
E½VN ðEN ÞjE t�

¼ max
ðztþ1, ::: , zN Þ

E max
i

�N
i jE t

� �
:

The key idea of KG procedure is to approximate VtðE tÞ by:

VKG
t ðE tÞ �

XN – 1

j¼t

max
zjþ1

E max
i

�jþ1
i – max

i
�j
ijE j

� �
þmax

i
�t
i,

and the problem reduces to solve the one-step optimization
problem,

max
ztþ1

E max
i

�tþ1
i – max

i
�t
ijE t

� �
: (21)

Intuitively, it maximizes the increment (e.g., gradient) in
the “knowledge” gained from the next sample, which
explains the name “knowledge gradient”.
We assume that the samples across different alternatives

are independent and have a common and known variance.
In this special structure, the optimal solution of Eq. (21)
has a closed form (see Steps 4–5 in Procedure 5 or
Theorem 1 in Frazier et al. (2008)). This structure is highly
attractive from the implementational point of view. More-
over, the procedure possesses other favorable properties.
For instance, it is consistent, i.e., the selected alternative
converges to the true best as the total sampling budget N
grows to the infinity, and the suboptimality of the KG
policy is bounded for any finite budget N .

Procedure 6 KG procedure

Require: Number of alternatives k, total sampling budget N , common and

known variance �2, prior predictive mean �i, and variance �2i for each
alternative

1: Set t←0. Let �t
i←�i, β

t
i←1=�

2
i and β ¼ 1=�2

2: while t < N do

3: Calculate the variance of the change in predictive mean by taking a sample

from alternative i, ~�2i ¼ ðβtiÞ–1 – ðβti þ βÞ–1

4: Calculate

�i ¼ – j�t
i –maxj≠i �

t
j

~�i
j, (22)

5: Choose ztþ1 ¼ argmaxi¼1, 2,:::, k ~�i

�
�iΦð�iÞ þ fð�iÞ

�
, where Φð⋅Þ and

fð⋅Þ denote the cumulative distribution function and probability density
function of the standard Gaussian distribution, respectively

6: Take a sample ytþ1
ztþ1 from alternative ztþ1. Update βtþ1

ztþ1←βtztþ1 þ β,

�tþ1
ztþ1←ðβtztþ1�

t
ztþ1 þ βytþ1

ztþ1 Þ=βtþ1
ztþ1

7: Set t←t þ 1

8: end while

9: Select argmax�t
i as the best

Procedure 5 EVI procedure for linear loss

Require: Number of alternatives k, common first-stage sample size n0³2,
total sampling budget N , and sampling budget τ per stage

1: Generate n0 samples from each alternative i

2: Set t←0, ni,t←n0, bt←
Xk

i¼1
ni,t

3: while bt < N do

4: Update xi and �̂2i . Set xð1Þ£xð2Þ£:::£xðkÞ and L ¼ f1, 2,:::, kg
5: Let l – 1

ðiÞðjÞ←�̂
2
ðiÞ=nðiÞ,t þ �̂2ðjÞ=nðjÞ,t , dðiÞðkÞ←xðkÞ – xðiÞ. Set btþ1←bt þ τ

6: For each alternative ðiÞ 2 L, calculate

nðiÞ,tþ1 ¼
�
τ þ

X
ðjÞ2LnðjÞ,t

�
�̂2ðiÞηðiÞ
� �1=2

X
ðjÞ2L �̂2ðjÞηðjÞ

� �1=2 , where ηðiÞ ¼

l
1=2
ðiÞðkÞ

ni,t – 1þlðiÞðkÞd2ðiÞðkÞ
ni,t – 2

ψni,t – 1 l
1=2
ðiÞðkÞdðiÞðkÞ

h i
for ðiÞ≠ðkÞ and

ηðkÞ ¼
X

ðjÞ≠ðkÞηðjÞ, and ψsð⋅Þ denotes the probability density function of a

standard student-t distribution with s degrees of freedom

7: while minðiÞ2L
�
nðiÞ,tþ1 – nðiÞ,t

�
< 0do

8: if nðiÞ,tþ1 – nðiÞ,t < 0 then

9: Set L←LnðiÞ and nðiÞ,tþ1←nðiÞ,t

10: end if

11: For each alternative ðiÞ 2 L, update

l – 1
ðiÞðkÞ ¼

�̂2ðiÞ=nðiÞ,t þ �̂2ðkÞ=nðkÞ,t , if ðkÞ 2 L

�̂2ðiÞ=nðiÞ,t , if ðkÞ =2L

(

12: Go back to Step 6

13: end while

14: Generate ni,tþ1 – ni,t samples from each alternative i 2 L. Set t←t þ 1

15: end while

16: Select argmax xi as the best
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The original KG procedure of Frazier et al. (2008) has
several variations. For instance, Frazier et al. (2009) and
Xie et al. (2016) extended the procedure to the case of
correlated sampling and correlated Gaussian beliefs on the
mean vectors. Ryzhov (2016) adopted a different way to
define the value of information functions and then derived
the corresponding optimal sampling allocation rule. In this
rule, the allocation ratios among the non-best alternatives
are quite similar to that of the OCBA procedure. However,
the total proportion of samples allocated to these non-best
alternatives vanishes as the total sampling budget grows to
infinity. To understand the connection between Ryzhov’s
procedure and the OCBA procedure, Peng and Fu (2017)
showed that the allocation rules of the OCBA procedure
can be achieved by slightly modifying the function used to
describe the value of information in Ryzhov (2016).

5 Large-scale R&S procedures using
parallel computing

As mentioned before, many existing R&S procedures
under either the fixed-precision or the fixed-budget
formulations are designed to solve small- or medium-
scale problems, with a total number of alternatives
typically less than 500, which is largely due to the limited
computing resource. On one hand, numerous large-scale
R&S problems in practice have thousands to millions of
alternatives, which are traditionally solved by optimiza-
tion-via-simulation (OvS) algorithms (see, for instance,
Hong and Nelson (2009) and Hong et al. (2015b) for
comprehensive reviews of OvS). On the other hand, the
fast development of computer technology and parallel
computing (e.g., either from the multi-core personal
computers to many-core servers or from smart phones to
cloud services) are prevalent and ready for ordinary users
to access. Then, using parallel computing to solve a large-
scale R&S problem directly becomes an interesting
research topic. It has even been labeled as one of the
three central developments in the past 15 years by Fu and
Henderson (2017).
Researchers begin investigating parallel computing for

R&S problems by asking the following questions: (i) Can
existing R&S procedures be easily implemented in a
parallel fashion? (ii) If not, how are these procedures
modified to suit for parallel computing environments?
(iii) In the process of parallelization, what kind of
substantial issues need to be addressed? To the best of
our knowledge, Yücesan et al. (2001) and Chen (2005) are
the two earliest works in the literature that attempted to
answer the first question. In particular, the former
implemented the OCBA procedure in a web-based parallel
environment, and the latter executed a multi-stage
procedure by distributing the simulation tasks to multiple
processors. However, both studies tested their procedures
only for a small-scale problem with 10 alternatives. Hence,

whether their procedures are suitable for handling large-
scale problems is unclear. Luo et al. (2015), Luo and Hong
(2011) and Ni et al. (2013; 2014; 2015; 2017) are works
that intended to answer the three questions. They
demonstrated that redesigned procedures can be used to
solve large-scale problems with thousands to millions of
alternatives in different parallel computing environments.
Various parallel computing environments are suitable

for R&S problems, and they can be classified into three
categories in general, i.e., Message-Passing Interface
(MPI), Hadoop MapReduce, and Apache Spark (Ni
et al., 2017). TheMPI (Gropp et al., 1999) is a standardized
and portable message-passing protocol for parallel pro-
gramming on several parallel computing architectures,
which is equipped with C/C++ and Fortran libraries.
Hadoop (Dean and Ghemawat, 2008) is an open-source
framework designed for distributed storage and processing
of large amounts of data and computation using the
MapReduce programming architecture. Apache Spark
(Zaharia et al., 2010) is also an open-source framework
for general-purpose parallel computing. MapReduce and
Spark are supported by various commercial clouds
including Amazon EC2, Google Cloud Platform, and
Microsoft Azure (Zhong and Hong, 2020). All three
frameworks can be implemented using the Master/Worker
parallel structure. MPI allows more flexibility of parallel
implementation but does not detect or manage core failures
automatically compared with MapReduce and Spark.
In the following, we first briefly describe both the

theoretical and implementational challenges as modifying
existing R&S procedures to suit for parallel computing
environments in Section 5.1. Then, we introduce some
different performance measures and new frameworks that
are developed for large-scale R&S problems in Section
5.2. Two representative procedures are also presented in
Sections 5.1 and 5.2, respectively.

5.1 Extending existing procedures to parallel

In traditional R&S problems, the efficiency of a procedure
can often be measured by the total running time, which is
approximately the total simulation time of generating
observations from different alternatives. This method is
reasonable because the operations of all other calculations
and comparisons are quite fast. In addition, the total time of
these operations could be negligible compared with the
total simulation time as solving small-scale problems in a
single-processor environment. However, when handling
large-scale problems in a parallel computing environment,
the situation becomes complicated, as the comparison
operations may become the bottleneck. The communica-
tions and synchronizations among different processors
may also need to be taken into consideration. In other
words, to measure the efficiency of a procedure in parallel
computing environments, we shall evaluate the running
time from four aspects, i.e., the simulation time, the
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comparison time, the communication time (i.e., the time to
transfer information between different processors), and the
synchronization time (i.e., the time to wait for the ready
state of all processors). For the sake of presentation, we
take the stage-wise and fully sequential procedures in the
fixed-precision formulation to illustrate the tradeoff among
the four aspects.
Stage-wise procedures are easy to parallelize, and no

communications occur among processors until the com-
parison operation at the end of each stage, which means
they are efficient in comparison and communication. The
synchronization is also not an issue if the simulation tasks
are distributed evenly among different processors. Com-
pared with fully sequential procedures, however, stage-
wise procedures are typically not efficient in the total
sample size, i.e., inefficient in simulation. For fully
sequential procedures, they conduct all-pairwise com-
parisons (i.e., kðk – 1Þ=2 in the worst-case) among all
alternatives still in contention at each round when all
alternatives add one observation, thus implying frequent
communications and synchronizations among different
processors. Therefore, they are inefficient in comparison,
communication, and synchronization.
The total sample size is inherently determined by the

theoretical framework of a procedure, which could be
hardly reduced even using parallel computing. Therefore,
the efficiency of stage-wise procedures has little room for
improvement. Moreover, several works in the literature
have focused on improving the efficiency of fully
sequential procedures by redesigning them to be fit for
parallel computing to reduce the times for comparison,
communication, and synchronization. For instance, Luo
et al. (2015) addressed the synchronization issue by
proposing an asynchronization scheme to achieve a high
simulation efficiency of sampling. They pointed out the
potential issues caused by all-pairwise comparisons and
frequent communications. Later, Ni et al. (2017) and
Zhong et al. (2020) addressed the comparison issue using
two different approaches, namely, a “divide-and-conquer”
scheme by distributing the all-pairwise comparisons and a
new comparison scheme by defining the “best” alternative
differently. They further mitigated the communication
burden by using batching techniques and boosting the
sample size of all surviving alternatives to a maximum
number afterward. Notably, different batching techniques
and boosting methods are proposed in Ni et al. (2017) and
Zhong et al. (2020), thus resulting in different theoretical
foundations of their procedures. Before introducing more
details, we first briefly describe the aforementioned
Master/Worker parallel structure, which has been used in
Luo et al. (2015), Ni et al. (2017), and Zhong et al. (2020).
Suppose that the parallel computing environment has

mþ 1 processors, in which one processor serves as the

master and the other m processors serve as the workers,
which are denoted by workers 1, 2,:::, m. The master is the
controller who determines the start and stop of the
program, creates m job tasks for the workers, manages
the data information, and performs all other necessary
calculations. Workers 1, 2,:::, m function in a simple way:
Taking the task from the master, processing the task,
submitting the result to the master, and requesting the next
task. The communications occur only between the master
and workers, and no communication occurs among
workers.
To address the synchronization issue, Luo et al. (2015)

defined each job task as generating one observation from
one alternative that is still in contention. In addition, all
alternatives in contention are queued in a round-robin
order in front of the master. This one-by-one task
assignment scheme requires no synchronization among
workers and can indeed fairly balance the workloads of
different workers. However, given the random processing
time of each task on different workers, the sequence of the
simulation results sent back to the master is also random,
which is likely to be different from the round-robin
assigning order. Therefore, it may cause unexpected
statistical issues as implementing existing fully sequential
procedures based on the output sequence. One straightfor-
ward way is to restore all the outputs exactly in the same
order as in the original input sequence and perform
comparisons according to the input sequence, which is the
basic idea for the vector-filling KN (VKN) procedure of
Luo et al. (2015). We omit the details about the VKN
procedure but summarize two disadvantages of VKN.
First, it needs to create a vector to store these outputs,
which may require a large amount of memory. Second, it
does not allow the failure of any worker or communication
interruption, as the vector may be incomplete if some of the
simulation results are lost in these situations.
To resolve these problems, Luo et al. (2015) proposed

the asymptotic parallel selection (APS) procedure, which
performs all-pairwise comparisons directly based on the
output sequence and introduces a phantom alternative to
determine the time points for comparisons.1) However, the
desired finite-time PCS guarantee is no longer achieved, as
the sample sizes of different alternatives in the output
sequence are random and perhaps unequal; these observa-
tions from the same alternatives are not even i.i.d.
Fortunately, the innovative idea of introducing the
phantom alternative, which serves as a drumbeat process
with predetermined time points, allows to establish a finite
lag of the difference between the input and output
sequences that finally vanishes in an asymptotic regime.
By doing so, the APS procedure of Luo et al. (2015)
provides an asymptotic PCS guarantee. We present the
APS procedure in Procedure 7.

1) Note that the phantom alternative does not need to be processed by any worker but immediately returns to the master for requiring the master to perform
eliminations by conducting all-pairwise comparisons.
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As mentioned but not addressed by Luo et al. (2015), all-
pairwise comparisons conducted in the master could
overwhelm the workload of the master, and the frequent
communications between the master and workers could
become a bottleneck for solving large-scale R&S pro-
blems. To reduce the comparisons, the good selection
procedure (GSP) of Ni et al. (2017) proposes a “divide-
and-conquer” approach to distributing all-pairwise com-
parisons among the workers. The master initially divides k
alternatives into m groups and asks each worker to conduct
local all-pairwise comparisons for eliminations within the

assigned group. Then, the computational complexity of
comparisons at each round is reduced from Oðk2Þ to
Oðk2=m2Þ. To improve the elimination efficiency further,
the master retrieves the m local bests from the m groups at
the beginning of each local comparison round to find the
global best. Then, the master sends the global best to the m
groups for additional comparisons.
To reduce the frequent communications, the GSP

introduces a batching technique of samples. In particular,
it suggests each worker to simulate a batch of 100 or 200
samples from one alternative at a time. In addition, when a
surviving alternative takes enough samples, i.e., reaching a
threshold, the procedure requires all surviving alternatives
to take a maximum number of samples. Then, it selects the
one with the largest sample mean as the best. By doing so,
the GSP can significantly reduce the communication
frequency. In fact, the maximum sample size in the
boosting stage (i.e., Stage 3 in their procedure) is
constructed based on the Rinott’s result. Moreover, the
sequential elimination rule in Stage 2 is built on the results
of Hong (2006). Taking advantage of both sequential and
stage-wise frameworks, GSP is an excellent hybrid
procedure that not only improves the comparison and
communication efficiency but also provides a finite-time
PGS guarantee of Eq. (8).
One potential drawback of GSP is its conservativeness

in terms of total sample size due to the batching technique
of samples and the error separation in the hybrid structure.
In other words, GSP sacrifices a certain level of sampling
efficiency to achieve lower computational complexities of
comparisons and communications as well as the finite-time
statistical guarantee. This drawback motivated Zhong et al.
(2020) to design the parallel Paulson’s procedure (PPP),
which takes a different approach to achieving simulation,
comparison, and communication efficiency.
In terms of the simulation efficiency, PPP adopts the

well-known sequential procedure of Paulson (1964),
which often requires a smaller sample size than the
stage-wise and the hybrid procedures in the same desired
guarantee level. In terms of the comparison efficiency, PPP
breaks all-pairwise comparisons into comparisons with the
“best”, which reduces the computational complexity of
comparisons from Oðk2Þ to OðkÞ at each comparison
round. The “best” involves both the sample mean and
sample variance information, which is different from the
global best involving only the mean information defined in
GSP. In terms of the communication efficiency, PPP uses a
different batching technique, i.e., batching alternatives
instead of samples, which can reduce the communication
frequency without increasing the sample size. PPP also
allows to boost the sample size to a maximum number in
Paulson’s sequential framework. In addition, by incor-
porating the result of Kao and Lai (1980), PPP can also
achieve the PGS guarantee.
We omit the presentation of both GSP and PPP.

Procedure 7 APS procedure

Require: Number of alternatives k, PCS 1 – α, IZ parameter δ > 0, the first-
stage sample size n0³2, and the number of processors mþ 1 (i.e., one
master and m workers)

1: Let a ¼ – log½2α=ðk – 1Þ� and I←f1; 2,:::, kg
2: Let p denote the phantom alternative queued after each round-robin
cycle, and let the stage r denote the current sample size of p

3: For all i 2 I , record the triple ðNir ,
XNir

‘¼1
Yi‘,

XNir

‘¼1
Y 2
i‘Þ, where Yi‘ is

the ‘ th completed observation from alternative i and Nir is the total sample
size obtained from alternative i at stage r. Set r←1, and set Nir←0,XNir

‘¼1
Yi‘←0,

XNir

‘¼1
Y 2
i‘←0 for all i 2 I

4: Use the round-robin order to start simulations on workers 1, 2,:::, m

5: while jI j > 1 do

6: Wait for the next observation Yh⋅

7: if h 2 I then

8: Update
XNhr

‘¼1
Yh‘←

XNhr

‘¼1
Yh‘ þ Yh⋅,XNhr

‘¼1
Y 2
h‘←
XNhr

‘¼1
Y 2
h‘ þ Y 2

h⋅ and Nhr←Nhr þ 1

9: else if h =2 I and h≠p then

10: Drop the observation

11: else if h ¼ p then

12: for all i, j 2 I and i≠jdo

13: if Nir³n0 and Njr³n0 then

14: Let τij,r ¼
S2i ðNirÞ
Nir

þ S2j ðNjrÞ
Njr

" # – 1

, where S2i ðNirÞ and S2j ðNjrÞ are the

sample variance of alternatives i and j, respectively

15: else

16: Let τij,r ¼ 0

17: end if

18: end for

19: Set I← i : i 2 I and τij,r Y iðNirÞ – Y jðNjrÞ
� �

³min 0, –
a

δ
þ δ

2
τij,r

� �
,

�

8j 2 I , j≠ig, where Y iðNirÞ and Y jðNjrÞ are the sample mean of alternatives i

and j, respectively

20: Set r←r þ 1

21: end if

22: end while

23: Select the alternative in I as the best
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Interested readers may refer to the works of the above-
mentioned authors for more details. The CRNs technique
is difficult to implement for VKN, APS, and GSP because
of the asynchronized simulation scheme in Luo et al.
(2015) and Ni et al. (2017). Moreover, CRNs are not
suitable for PPP because of the newly designed compar-
ison scheme in Zhong et al. (2020).

5.2 New parallel framework with sample-size optimality

The aforementioned procedures for parallel computing
environments are all built on the paradigm of existing
stage-wise or fully sequential R&S procedures. They have
even successfully solved R&S problems with up to
millions of alternatives. Therefore, we must ask whether
they are fundamentally suitable for handling large-scale
problems. More precisely, we would like to know how the
expected total sample size E½N � increases as the number of
alternatives k increases.
To answer the question, Zhong and Hong (2020) first

proved that the growth rate of E½N � for any procedure with
the PCS guarantee is lower bounded by OðkÞ. Then, they
defined the sample-size optimality of a procedure if the
upper bound of the growth rate of E½N � can achieve the
lower bound rate, that is, E½N � ¼ OðkÞ. Intuitively speak-
ing, the lower bound of E½N � is easy to understand, as each
alternative requires at least one observation to estimate the
unknown mean, thus resulting in a total sample size
growing at least linearly in k. The lower bound is universal
for all stage-wise and fully sequential procedures in either
the IZ or IZ-free framework (Zhong and Hong, 2020).
However, the upper bound is typically higher than the

order of k for all existing stage-wise and fully sequential
procedures. For instance, the expected total sample size of
each alternative in Paulson’s procedure grows proportion-
ally to the ending point of the continuation region, which
grows in the order of log k, thus leading toOðklog kÞ in the
total sample size. This is because it needs to compare the
best with all other k – 1 alternatives in pairs in theoretical
formulation, which is also true for other fully sequential
procedures, such as the KN procedure. Similarly, stage-
wise procedures, e.g., one-stage procedure of Bechhofer
(1954) and two-stage procedure of Rinott (1978), also need
to compare the best with all other k – 1 alternatives in a
joint formulation, as in Eq. (12). Thus, the sample size of
each alternative in Eq. (13) grows as k increases, which
inevitably leads to a higher order of k in the total sample
size. In other words, neither fully sequential nor stage-wise
procedures can achieve the sample-size optimality due to
the nature of comparisons between the best alternative and
all others.
Inspired by the knockout tournament arrangement of

tennis Grand Slam tournaments, Zhong and Hong (2020)
proposed a novel parallel selection framework in which the
champion (i.e., the unknown best) does not have to play

with all others to be declared as the best. In particular, the
knockout tournament (KT ) procedures of Zhong and
Hong (2020) divide all alternatives into pairs and construct
a “match” between two alternatives in pairs, thus keeping
the winner for the next round “matches” while knocking
out the loser after the current round. By doing so, KT
procedures eliminate approximately half of the alternatives
at each round and therefore achieve the theoretical lower
bound of E½N �. The sample-size optimality is achieved
regardless of whether the variances of the alternatives are
known or not. However, it will only change the constants
on the optimal upper bounds.
This structure of theKT procedures is perfect for parallel

computing in terms of synchronization, communication,
and comparison efficiency. The KT procedures can divide
all alternatives into m subsets and assign each subset to one
processor to conduct selections simultaneously among the
alternatives in that subset. Then, neither synchronization
nor communication is necessary among different proces-
sors until each processor produces a local best alternative.
Given that all “matches” in each processor are conducted
independently and locally, and CRNs technique can be
easily implemented into KT procedures. In addition, as
comparisons are only made within “matches”, Zhong and
Hong (2020) demonstrated that the comparison time in the
procedures is negligible compared with the simulation time.
In fact, the number of comparisons is only half of the total
sample size, as simulating two observations (i.e., one for
each alternative) is coupled with just a single comparison.
In each “match”, any existing R&S procedures can be

used to determine the winner, and KT procedures adopt
the KN procedure to achieve the PCS guarantee and to
gain sampling efficiency on the total sample size. The
sampling efficiency can be further improved by assigning
more than two alternatives into one “match”. The PGS
guarantee can also be obtained by allocating the IZ
parameter in different rounds.
For the simplicity of presentation, we adopt the notation

of KN ðC, αr, δ, n0Þ in Zhong and Hong (2020) to denote
the output of executing the KN procedure in each
“match”, which provides a PCS of 1 – αr among the
alternatives with unknown means and unknown variances
in the set C when the first stage sample size is n0 and the
IZ parameter is δ. In the following, we present the KT þ,
one of the KT procedures for parallel computing
environments of Zhong and Hong (2020), in Procedure 8.
We conclude this section by briefly reviewing some

other recent works on parallel R&S problems. Hunter and
Nelson (2017) argued that different performance measures
and different formulations are needed for large-scale R&S
problems. As a response, Pei et al. (2018) proposed a
different objective function, i.e., the expected false
elimination rate (EFER) rather than the PCS/PGS. They
argued that having a sizeable number of alternatives is
more reasonable. Ma (2018) extended the Envelop
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procedure of Ma and Henderson (2017) to parallel
computing environments, which established a new error
bound of Brownian motion processes inspired by the
multi-armed bandit problem of Jamieson et al. (2014).
Notice that these abovementioned procedures using
parallel computing are fixed-precision procedures. Some
of the well-known fixed-budget R&S procedures have also
been adapted to parallel computing environments. For
instance, Kamiński and Szufel (2018) considered the
asynchronization issue as extending both the OCBA and
KG procedures in parallel computing environments and
discussed the efficiency of these procedures for small- and
large-scale problems.

6 Emerging R&S problems

Besides fixed-precision and fixed-budget R&S problems,

some research problems that expend classical R&S from
different perspectives have emerged, e.g., considering
multiple performance measures, taking the input uncer-
tainty into account, and treating the performance measure
as a function of the underlying contexts. In the following,
we briefly discuss recent achievements in these topics
without presenting the detailed procedures.

6.1 Constrained R&S

Traditional R&S problems often focus on only one
performance measure. However, in various practical
situations, we may be interested in multiple performance
measures. For instance, in service centers, managers are
concerned about the expected cost and customer waiting
times. In production systems, managers care about not only
the expected throughput but also the associated product
quality. One way to deal with multiple performance
measures is to model the primary one as the objective
and to model others as constraints. This leads to
constrained R&S problems considered in the simulation
literature.
The study by Andradóttir and Kim (2010) is one of the

first works in this area. The authors indicated that the
primary and secondary simulation outputs are i.i.d. bi-
variate Gaussian random vectors with unknown mean
vector and covariance matrix. They extended the IZ
formulation to this problem and designed fixed-precision
procedures that are capable of solving the problem. Healey
et al. (2014) further developed the work of Andradóttir and
Kim (2010) to handle multiple secondary performance
measures. Then, Healey et al. (2015) reconsidered the
problem by taking the switching cost into consideration.
Rather than modeling the secondary performance as a
Gaussian random vector as all previous works, Hong et al.
(2015a) perceived the secondary performance as a
Bernoulli random variable and the secondary performance
measure as a probability. Hence, they called the problem a
chance-constrained R&S problem. They built a hypothesis
test on the chance constraint, thus resulting in an efficient
two-stage procedure that performs the feasibility check in
the first stage and selects the best among all the sample
feasible alternatives in the second stage.
Different from the IZ formulation of the constrained

R&S mentioned above, Lee et al. (2012) addressed the
problem under the OCBA framework. Meanwhile, Hunter
and Pasupathy (2013) and Pasupathy et al. (2015) solved
the problem based on the large deviations theory by
analyzing the asymptotic rate of identifying the optimal
feasible solution, which is later known as Sampling
Criteria for Optimization using Rate Estimators
(SCORE) simulation framework. Recently, Gao et al.
(2019a) considered constrained R&S problems in the
OCBA formulation, in which they used large deviations
theory and incorporated a quadratic regression metamodel
to improve the efficiency further.

Procedure 8 KT þ procedure

Require: Number of alternatives k, PCS 1 – α, IZ parameter δ > 0, the first-
stage sample size n0 > 2, the parameter l ð0 < l < δÞ, number of
alternatives g³2 within a “match”, and the number of processors mþ 1 (i.e.,
one master and workers)

1: Let I sr be the set of alternatives in contention at the beginning of round r in
processor s for s ¼ 1, 2,:::, m

2: Equally allocate k alternatives to m processors so that each processor
handles the selection of approximately k=m alternatives, e.g., for

i ¼ 1, 2,:::, k, let I ðimodmÞþ1
1 ¼ I ðimodmÞþ1

1 [fig
3: for all s ¼ 1; 2,:::, m do

4: Set r ¼ 1

5: while jI sr j > 1do

6: Let I srþ1 ¼ Æ. Group alternatives in I sr with the size of g. In the case of
leftover ones, let them form a group. After grouping, a total of djI sr j=ge groups
are formed. Let I sr,q denote the set of the alternatives in group q for
q ¼ 1, 2,:::, djI sr j=ge of processor s at round r

7: Let αr ¼ α=2r . For each group q ¼ 1, 2,:::, djI sr j=ge, set C   ¼ I sr,q and

compute I srþ1 ¼ I srþ1 [fKN ðC, αr , δ, n0Þg
8: Set r ¼ r þ 1

9: end while

10: Let Is denote the index of the alternative in I sr

11: Take n0 observations from alternative Is. Calculate its sample variance S2Is

based on these n0 observations. Set r ¼ logg
k

m

� �
þ 1, αr ¼ α=2r, and

hðαr , m, n0Þ, which is the Rinott’s constant determined by αr , m and n0

12: Set Nmax,Is ¼ max n0,
hðαr , m, n0ÞSIs

δ

� �2
& ’( )

. Then, take additional

Nmax,Is – n0 observations from alternative Is

13: Compute the sample mean X Is ðNmax,Is Þ
14: end for

15: Let I denote the set of alternatives containing all the best alternatives
produced by m processors. Select the alternative with the largest sample mean
X Is ðNmax,Is Þ for Is 2 I
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6.2 Multi-objective R&S

Except for the constrained R&S formulation, another way
to handle multiple performance measures is to treat them as
simultaneous objectives to optimize, thereby giving rise to
the multi-objective R&S formulation. Multi-objective
R&S problems are different from the classic single-
objective R&S problems mainly in two aspects. First, in
the multi-objective problems, an alternative “dominating”
another alternative means that it is better on all objectives.
Therefore, the single “best” alternative that dominates all
others may not exist, and the goal of multi-objective R&S
turns to select the set of all non-dominated alternatives, as
termed by the Pareto set. Second, two types of probabilities
are defined to measure the errors when a dominated
alternative is included into the Pareto set and a non-
dominated alternative is excluded from the set.
Multi-objective R&S procedures are often designed

based on traditional R&S procedures. Interested readers
may see Hunter et al. (2019) for a detailed review. Lee et al.
(2010) extended the OCBA procedures to find the
sampling allocation rule that minimizes the weighted
sum of the two types of error probabilities. Alternatively,
Feldman and Hunter (2018) and Applegate et al. (2020)
derived the optimal sampling allocation rule by adopting
the SCORE framework. Branke and Zhang (2015)
supplemented the EVI procedure. At each stage, the new
procedure allocates samples to the alternative that most
likely changes the observed Pareto set. Branke et al. (2016)
further developed the KG procedures and allocated the
sample at each stage such that the estimated expected
Pareto set is the closest to the true Pareto set.
The multi-objective procedures above are all designed

for fixed-budget. Meanwhile, the literature has also
suggested several fixed-precision multi-objective proce-
dures. Batur et al. (2018) formulated the mean-variance
portfolio analysis as a bi-objective R&S problem and
proposed a bi-objective procedure under the IZ formula-
tion that controls both types of error probabilities. Wang
and Wan (2017) designed a sequential IZ-free procedure
for the multi-objective procedure based on the generalized
sequential likelihood ratio test.

6.3 R&S with input uncertainty

In simulation studies, the input distributions are often
estimated from the data and other information, thus having
uncertainty in them. This uncertainty is called input
uncertainty. For instance, when modeling the arrival
process of an online service system, multiple plausible
distributions can fit the input historical data, especially
when the data set is not sufficiently large. When specifying
the demand curve of a newly launched product, different
managers may have varying beliefs on it. Any distribution
of such items can be used as a proxy of the true input
distribution. However, the corresponding “best” alternative

may be different. In other words, no single alternative may
be the best for all the possible scenarios of the input
distributions. Then, taking the uncertainty of the simula-
tion model into consideration in making R&S decisions is
an interesting problem in R&S.
Song et al. (2015) studied the impact of input uncertainty

on the classic IZ procedures and found that a straightfor-
ward application of IZ procedures may fail to deliver the
desired PCS in the presence of uncertainty. They further
proposed an adjustment to provide an average PCS.
However, this average PCS guarantee cannot be delivered
for some configurations of the competing alternatives.
Therefore, it is still necessary to design procedures that are
able to address the R&S with input uncertainty.
To design such procedures, Fan et al. (2013) innova-

tively proposed a robust selection-of-the-best (RSB)
framework. Particularly, the RSB formulation includes
all the possible scenarios of input distribution into an
ambiguity set and then takes a robust perspective to define
the best alternative with respect to the worst-case mean
performance measures over the ambiguity set. Fan et al.
(2020) further improved their work and proposed both
two-stage and sequential procedures that can achieve the
user-specified PCS. These RSB procedures are also tested
by a healthcare queueing system with both synthetic and
real hospital data. Gao et al. (2017b) considered the RSB
formulation under the OCBA framework, in which the
approximated PCS is also measured by the worst-case
performance. Besides the PCS guarantee, Wu and Zhou
(2019) took the RSB formulation from the fixed-budget
viewpoint into account, in which a joint budget for both
collecting input data and running simulations is given in
advance.

6.4 R&S with covariates

In some problems, the performance measure of an
alternative may vary as a function of some observable
random covariates, which are also known as side
information, auxiliary quantities, or contextual variables.
For instance, in healthcare management, the treatment
outcome of a particular drug may depend on the patient’s
biometric characteristics. In revenue management, the best
assortment could vary according to customer segmenta-
tion. Then, the best alternative is not universal but depends
on the value of underlying covariates (e.g., patient’s
biometric characteristics or customer segmentation). This
type of selection of the best problem is called R&S with
covariates (R&S-C) or contextual R&S.
Reasonably defining and measuring a correct selection

of the best is the first question that needs to be addressed.
Shen et al. (2017) were the first to introduce several
definitions of correct selection for R&S-C from the
frequentist perspective. They first defined the conditional
PCS, which is denoted by PCSðxÞ, as the probability of
selecting the best alternative (more precisely, the good
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alternative within IZ) for an individual whose random
covariates (denoted by X ) take the value x. Then, two
forms of unconditional PCS are introduced. One is the
average PCS, i.e., E½PCSðX Þ�. The other is the worst PCS,
i.e., minx2Ω PCSðxÞ, where Ω is the support of X . In Shen
et al. (2017; 2019), they assumed a linear model between
the mean performance of an alternative and the correspond-
ing covariates. Moreover, they developed fixed-precision
procedures that can produce selection policies (mapping
from covariates to alternative index) to achieve the desired
targets of unconditional PCS. The IZ formulation in R&S-C
is natural and critical, as the mean performance surfaces of
alternatives may intersect somewhere and the performance
of different alternatives at the neighborhood of intersection
points can be arbitrarily close or equal. Li et al. (2018)
adopted the R&S-C framework developed by Shen et al.
(2017). However, they designed new selection procedures
to accommodate the high-dimensional covariates and the
general (nonlinear) dependence between the mean perfor-
mance of alternatives and the covariates.
Fixed-budget R&S-C problems have also been tackled

under the Bayesian framework, with the aim of adaptively
allocating a given sampling budget to the alternatives and
over the domain of covariates to find the best response
across the entire domain of covariates efficiently. Hu and
Ludkovski (2017) proposed to model the performance
functions of alternatives as Gaussian random fields and
used the expected improvement criteria to develop
Bayesian procedures. Pearce and Branke (2017) followed
the same setting in Hu and Ludkovski (2017) and proposed
a KG-based sampling policy with a focus on efficiently
estimating the expected improvement over a continuous
domain. Zhang et al. (2020) extended the problem to a
more general setting where the sampling noise can be
heteroscedastic and the sampling cost at different locations
can be different. More importantly, they provided a
theoretical analysis of the asymptotic behavior of the KG
based policy and proved that the best alternative as a
function of the covariates will be identified almost surely
as the number of samples grows. Gao et al. (2019b)
considered the case where the covariates only take discrete
values and designed an OCBA-based sampling policy that
converges to the asymptotic optimal budget allocation rule.

7 Important research questions on R&S

In this section, we outline six R&S problems that we think
are important and yet to be solved. We will explain why we
believe these problems are important. Some of these
problems have also been considered in the literature.
However, we feel that they deserve more research
attention.
Problem 1: Besides the knockout-tournament proce-

dures and the median-elimination procedures introduced in

Section 5.2, are there other types of rate-optimal fixed-
precision large-scale R&S procedures?
Reason: Large-scale R&S is at the center stage of

today’s R&S research because small-scale problems have
been studied extensively in the literature, and moreover,
they are typically easy to solve with today’s computing
resources. The sample-size optimality result of Zhong and
Hong (2020) shows that large-scale problems are funda-
mentally different from small-scale problems, and many
R&S procedures that are efficient for small-scale problems
are not efficient for large-scale problems. Therefore, more
procedures need to be proposed under different parallel
computing frameworks to solve various large-scale R&S
problems.
Problem 2: Are there rate-optimal fixed-budget large-

scale R&S procedures?
Reason: Fixed-budget R&S procedures typically show

that their sample-allocation scheme converges to the
optimal scheme of Glynn and Juneja (2004), as shown in
Section 4. However, the optimal scheme depends heavily
on the asymptotic regime, i.e., the number of alternatives
stays the same and the total sample size reaches infinity. If
the number of alternatives also goes to infinity, as in Zhong
and Hong (2020), it is no longer optimal. Indeed, the
optimal rate of Zhong and Hong (2020) also applies to
fixed-budget R&S problems. Therefore, fixed-budget
large-scale R&S procedures that are both rate-optimal
and efficient in solving practical large-scale problems must
be designed.
Problem 3: How can we design effective dynamic-

programming-based procedures to solve fixed-budget
R&S problems?
Reason: As we have shown in Section 4, fixed-budget

R&S problems are in essence finite-time stochastic
dynamic programs. However, procedures in the literature
are primarily static-allocation approximations or one-step-
look-ahead approximations. There appears no serious
attempt to directly solve the dynamic programs. However,
under Bayesian formulation, the posterior distributions are
Gaussian distributions that can be simulated very easily.
Therefore, Monte-Carlo-simulation-based approximate
dynamic programming (ADP) or reinforcement learning
techniques that consider multiple steps seem applicable. Of
course, one also has to demonstrate or quantify both
theoretically and numerically that going beyond a single
step may bring actual benefit.
Problem 4: How can we design fixed-budget R&S

procedures that are suitable for parallel computing
environments?
Reason: As of now, the research attention on parallel

R&S seems primarily focused on fixed-precision proce-
dures. Fixed-budget procedures are often based on
dynamic-programming formulation, which requires a
significant amount of communications among alternatives
to determine a sample-allocation policy. Thoughtful
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approaches need be proposed to avoid excessive synchro-
nizations and communications in order to implement fixed-
budget procedures in parallel computing environments.
Problem 5: Do many fixed-precision elimination

procedures (e.g., Paulson’s, KN and KT ) that satisfy
PCS guarantee also satisfy PGS guarantee?
Reason: As we reviewed in Section 2, the PCS

guarantee requires only a single best, which must be at
least δ larger than all other alternatives. Determining
whether a practical problem satisfies this requirement is
generally very difficult. Hence, a PGS guarantee that
selects an alternative in the indifference zone is certainly
more reasonable. However, several fixed-precision elim-
ination procedures (e.g., Paulson’s, KN and KT ) that
satisfy the PCS guarantee cannot be proven to satisfy the
PGS guarantee. Some of them may be adjusted to satisfy
such guarantee at the cost of significantly larger sample
sizes (Eckman and Henderson, 2018a). To the best of our
knowledge, empirical evidence has shown that Paulson’s,
KN andKT always satisfy the PGS guarantee. Hence, we
wonder whether they actually satisfy the PGS guarantee or
at least do under some conditions, e.g., when the number of
alternatives is large.
Problem 6: How can we better integrate R&S into

optimization-via-simulation (OvS) algorithms?
Reason: Many OvS algorithms require either keeping

the current sample best solution or selecting from a group
of neighboring solutions. These requirements are naturally
R&S problems. Indeed, a number of R&S procedures have
been proposed to work with OvS algorithms. For instance,
Boesel et al. (2003) proposed using R&S at the end of the
OvS process to select the best from all visited solutions,
which they called “clean-up”. Pichitlamken et al. (2006)
propose to use R&S in neighborhood selection. Mean-
while, Hong and Nelson (2007a) considered methods to
ensure that the current best discovered by the OvS
algorithm is indeed the best at any time of the OvS
process. In addition, He et al. (2010) and Zhang et al.
(2017) incorporated the OBCA procedures into the cross-
entropy and particle swarm OvS algorithms, respectively.
However, besides the clean-up procedure, which requires
extra work after the OvS process is done and provides no
information for OvS algorithms to find a better solution,
other ideas tend to slow down the optimization process
significantly and output considerably worse solutions.
Therefore, it is interesting to figure out how to integrate
R&S into simulation optimization algorithms so that the
optimization process may benefit from R&S. Recently,
Eckman and Henderson (2018b) showed that the reuse of
the simulation observations from the optimization process
(also called the search process) by a clean-up procedure at
the end of the optimization process may jeopardize the
PCS/PGS guarantee. However, without reusing the
simulation observations, R&S-based clean-up procedures
may require a significant amount of simulation observa-

tions that may be too expensive to conduct in practice.
Therefore, resolving this issue also imposes a theoretical
challenge when integrating R&S into OvS algorithms.
Naturally, the R&S field has numerous other interesting

research problems and emerging research topics. As
computing resources are becoming widely available, in
general, increasingly complicated R&S problems need to
be solved.
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