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Abstract

Capacity planning is a very important global challenge in the face of Covid-19

pandemic. In order to hedge against the fluctuations in the random demand and to

take advantage of risk pooling effect, one needs to have a good understanding of the

variabilities in the demand of resources. However, Covid-19 predictive models that are

widely used in capacity planning typically often predict the mean values of the demands

(often through the predictions of the mean values of the confirmed cases and deaths) in

both the temporal and spatial dimensions. They seldom provide trustworthy prediction

or estimation of demand variabilities, and therefore, are insufficient for proper capacity

planning. Motivated by the literature on variability scaling in the areas of physics and
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biology, we discovered that in the Covid-19 pandemic, both the confirmed cases and

deaths exhibit a common variability scaling law between the average of the demand

µ and its standard deviation σ, that is, σ ∝ µβ, where the scaling parameter β is

typically in the range of 0.65 to 1, and the scaling law exists in both the temporal

and spatial dimensions. Based on the mechanism of contagious diseases, we further

build a stylized network model to explain the variability scaling phenomena. We finally

provide simple models that may be used for capacity planning in both temporal and

spatial dimensions, with only the predicted mean demand values from typical Covid-

19 predictive models and the standard deviations of the demands derived from the

variability scaling law.

Key words: Covid-19; capacity planning; variability scaling; demand aggregation; net-

work model; risk pooling effect

1 Introduction

The Covid-19 pandemic has brought a global public health crisis. On one hand, some critical

medical resources are facing shortage and therefore require a fair and rational planning and

allocation of these resources (Emanuel et al., 2020), including the medical personnel of nurses

and physicians (Bersano and Pantoni, 2020; Vergano et al., 2020), the critical equipment of

ventilator and ECMO service as well as the ICU management (Kotfis et al., 2020; Mehrotra

et al., 2020; White and Lo, 2020), the personal protective equipment of masks and alcohol

(Livingston et al., 2020), and so on. On the other hand, capacity planning and maintenance of

these resources are often challenging and costly in practice. For instance, the New York City

has issued an ambitious pandemic preparedness plan of stockpiling thousands of ventilators

and millions of masks right after the 2006 SARS outbreak. Due to the budget constraints,

the city only acquired 500 additional ventilators at the beginning, but all were auctioned off

a few years later because the department could not afford the expensive maintenance cost

(Elliott et al., 2020).1

1Interested readers may refer to the PROPUBLICA for a detailed report via https://www.propublica.

org/article/how-new-york-city-emergency-ventilator-stockpile-ended-up-on-the-auction-block.
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In order to provide professional advice and guidelines for decision makers to combat

Covid-19, it is important to understand the evolution of Covid-19 infected cases and then

establish capacity planning models and resource allocation rules over different time periods

and across different regions. There emerge many works on data analysis and predictions of

Covid-19 in the past several months. To name a few, Remuzzi and Remuzzi (2020) propose

an exponential model to fit the data in Italy, and Crokidakis (2020) builds a susceptible-

infectious-quarantined-recovered (SIQR) model for Covid-19 in Brazil, while Fanelli and Pi-

azza (2020) use a susceptible-infected-recovered-deaths (SIRD) model to forecast the Covid-

19 spreading trends in China, Italy and France. The team from the Institute for Health

Metrics and Evaluation (IHME) at the University of Washington also develops modified

susceptible-exposed-infectious-recovered (SEIR) models to predict the evolution trends in

different scenarios in the US and other countries worldwide.2 These models are in general

developed to predict the mean of Covid-19 cases, e.g., infected and death cases, over different

time periods and regions. There are also some recent works that combine Covid-19 data with

other data to deliver a better prediction, e.g., Jia et al. (2020) use the mobile phone data to

develop a spatio-temporal risk source model that can forecast the distribution of confirmed

cases.

However, predicting only the mean demand over different time periods (i.e., in the tem-

poral dimension) and over different geographical locations (i.e., in the spatial dimension)

is not enough. Understanding the corresponding variability of demand is also very critical

for determining medical resource planning and allocation. Some models also provide a 95%

confidence interval of their estimates. However, it is not clear what the confidence intervals

mean. For example, some critics have pointed out that the actual death rate was outside the

95% confidence interval of IHME’s prediction in nearly 70% of the US states (Marchant et al.,

2020), which highlights the need for better characterization and more accurate estimates of

the variabilities.3 Based on classical theories on capacity planning in the areas of production

and operations management, to hedge against the fluctuations in the random demand and

2More detailed information can be found via http://www.healthdata.org/covid.
3See article for more details https://www.sydney.edu.au/news-opinion/news/2020/04/14/

us-covid-19-deaths-poorly-predicted-by-ihme-model.html.
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to take advantage of the risk pooling effect, one needs to have good understanding of the

variabilities in the demand of resources.

Traditionally, the variability may have already been specified by the stochastic processes

as modeling the random demand arrivals. For instance, the Poisson and inhomogeneous

Poisson processes are often used to model the patient arrivals to a healthcare system (Green,

2005), which implies that the standard deviation (i.e., a common approach to quantifying

variability) of the demand is the square root of the mean demand. Then, the famous square-

root staffing rule can be obtained (Yom-Tov and Mandelbaum, 2014). The square-root

staffing rule indicates a strong pooling effect in the temporal dimension, which is due to the

independent increments property of Poisson models. Similarly, the pooling effect has been

obtained in the spatial dimension, e.g., by specifying the demand correlation structures in

the inventory problem with multiple locations in Eppen (1979), Corbett and Rajaram (2006)

and Mak and Shen (2014).

The pooling effect, which means fulfilling the demands for multiple time periods or dif-

ferent locations from a centralized system, is essential for planners to make proper inventory

or resource allocation decisions to meet certain quality of service (QoS) levels (Bimpikis and

Markakis, 2016). The magnitude of the pooling effect depends not only on the average de-

mand level, but also on the scale of variability. Then, appropriately modeling the variability

becomes very critical.

Motivated by the literature on variability scaling in the areas of physics and biology,

in this study, we discovered that in the Covid-19 pandemic, both the confirmed cases and

deaths exhibit a common variability scaling law between the average of the demand µ and

its standard deviation σ, that is,

σ ∝ µβ, (1.1)

where β is the scaling parameter that determines the scaling effect, which is typically in

the range of [0.5, 1], and the scaling law exists in both the temporal and spatial dimensions.

Notice that the Poisson and inhomogeneous Poisson process models also obey the variability

scaling law, with β = 0.5. Indeed, one can prove that commonly used time series models,

such as auto-regressive models and moving-average models, also obey the variability scaling
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law with β = 0.5. Notice that the square-root staffing rule may be extended to these time

series models and the square root corresponds to β = 0.5.

The relationship in Equation (1.1) captures the scaling phenomena in many areas, in

order to understand the dynamics and the structure of a complex system. In ecology, Taylor

was among the first who showed empirically that the mean and standard deviation of the

number of individuals of a species in a region follows this scaling relation (Taylor, 1961),

which is known as Taylor’s law today. In physics, this law is known as fluctuation scaling,

and it was found in heavy-ion collision experiments (Botet et al., 2001) and in fluxes of

cosmic radiations (Uttley and McHardy, 2001). This law has also been discovered in some

other systems, including stock markets (Eisler and Kertész, 2006), emails and printing jobs

etc. (Barabási, 2005; Oliveira and Barabási, 2005)4. However, it appears that this law has

not been discovered in Covid-19 or other healthcare systems.

By analyzing the Covid-19 data, we find that the values of β are typically greater than

0.5. In fact, they are between 0.7 and 1 in most situations. Note that β < 1 implies

that there is a pooling effect and, therefore, there exist economies of scale in the medical

resource planning. Meanwhile, β > 0.7 suggests that the pooling effect is not as strong as

what is commonly expected under the Poisson models, which tends to underestimate the

resource requirement and lead to a lower QoS if not taking the true variability scaling into

consideration. We show that the variability scaling phenomena exist not only in Covid-19,

but also in various healthcare demands, in both temporal and spatial dimensions, based on

a number of datasets from different healthcare systems in different countries.

Based on the mechanism of contagious diseases, we further build a stylized network

model to explain the variability scaling phenomena. In the model, the critical reason that

the variability scaling phenomenon emerges is that the network is a small-world network,

where any two persons in the network can be linked with a small of steps (West et al., 1999;

Salathé et al., 2010). Therefore, the diseases can be transmitted quickly between any two

random persons, which matches what we have seen in the Covid-19 pandemic. Furthermore,

4As an interesting note, Oliveira and Barabási (2005) showed in their Nature paper that the mail corre-

spondence patterns between Darwin and Einstein follow the variability scaling law.
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to illustrate how the variability scaling affects the capacity planning, we also provide a simple

model that may be used for capacity planning and resource allocation in both temporal and

spatial dimensions, with only the predicted mean demand values from typical Covid-19

predictive models. In this model, the standard deviations of the demands are derived from

the variability scaling law.

The contributions of this study can be summarized in the following three folds. We first

show that variability scaling exists in the Covid-19 pandemic in US, Italy, Brazil, China and

worldwide, and also in many other healthcare systems. Then, we propose a network model

to provide a reasonable explanation that can theoretically yield the scaling phenomena.

Finally, we establish explicit formulas between variability scaling and capacity planning, and

economies of scale. We show that high variability requires extra resource planning, and the

high variability reduces the benefit of economies of scale.

We close this section by briefly reviewing some existing works in the operation manage-

ment literature, which is closely related to our study. Eppen (1979) is a seminal work on

the pooling effect of a multi-location newsvendor problem where the demand correlations are

captured by the covariance matrix of a multivariate normal distribution. This work has been

generalized by Corbett and Rajaram (2006) for non-normal dependent demand distributions

and extended by Mak and Shen (2014) to a general supply chain network model with various

dependence structures. These studies can be viewed as modeling works on the demand vari-

ability in the spatial dimension. In the temporal dimension, the doubly stochastic Poisson

process proposed by Whitt (1999) is one of the pioneering works that model the demand

correlation of the arrival process for call centers. Since then, in a stream of research, e.g.,

Chen and Henderson (2001); Avramidis et al. (2004), stochastic arrival rates of arrival pro-

cesses have been studied in various queueing models for call center operations management.

Empirical studies of Kim and Whitt (2014); Kim et al. (2015) investigate the Poisson and

non-Poisson properties for call centers and healthcare systems to address data fitting issues,

e.g., over-dispersion of Poisson models. Recently, Whitt and You (2019) use the index of

dispersion for counts (IDC) introduced in Fendick and Whitt (1989) to emphasize the im-

portance of dependence in single-server queueing systems. However, rather than providing

the IDC to indicate the dispersion between the mean and standard deviation, we establish
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the relation between the mean and standard deviation via the proposed variability scaling

law. The variability scaling reveals the long-range dependence over time.

The rest of this paper is organized as follows. In Section 2, we summarize our empirical

findings which show that variability scaling exists in the Covid-19 pandemic and all other

investigated healthcare systems. We then propose a network model to explain the mechanism

of variability scaling in Section 3. In Section 4, we show how the variability scaling affects

the capacity planning using a stylized demand model. Section 5 concludes the paper.

2 The Evidence: What is Variability Scaling?

By taking the logarithmic transformations, the law of variability scaling in Equation (1.1)

becomes

log σ = α + β log µ,

where α and β are the regression coefficients to be estimated, and the standard deviation σ

and the average µ will be computed from the data. In other words, the statistical model can

be expressed as follows,

log σ̂i = α + β log µ̂i + εi, i = 1, 2, . . . , N, (2.1)

where log µ̂i and log σ̂i are the “observable” variables, εi are the unobserved error terms, and

N is the total number of “observations” for log µ̂i and log σ̂i.
5 Both µ̂i and σ̂i are computed

from the corresponding sample average and sample standard deviation,

µ̂i =
1

bi

bi∑
j=1

Yij, and σ̂i =

[
1

bi − 1

bi∑
j=1

(Yij − µ̂i)2
]1/2

,

where Yij, j = 1, 2, . . . , bi are random samples of size bi from observation i.

The index i plays an essential role in our study, which could be used to represent different

subsystems in different dimensions. For instance, in the temporal dimension, the subsystems

5In fact, the “observations” for log µ̂i and log σ̂i are not directly observable but computed based on

the sample average and sample standard deviation, which then bring the error terms into the model. We

adopt to use the word “observation” simply following the traditional terminology in the statistic/econometric

literature.
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could be daily new cases of Covid-19 in one country in different consecutive daily intervals;

in the spatial dimension, the subsystems could represent new cases occurred in different

geographical state locations. To better calibrate the power relationship, subsystems must

have different sizes, so that the scaling phenomena may be observed over different magnitude

scales.

Note that the statistical model in Equation (2.1) is often called a loglinear regression

model in econometric literature, which studies the elasticities rather than the marginal effects

between σi and µi (see, for example,(Verbeek, 2008)). However, we interpret the model from

a statistical point of view rather than an econometric perspective since the endogeneity

between σ and µ is intrinsic and difficult to be removed. Nevertheless, the model is simple

and has been widely studied in various research areas in the literature and it can provide us

some managerial insights in Covid-19 and other healthcare management problems.

2.1 Empirical Study in Covid-19 Pandemic

To establish the variability scaling law in Covid-19 pandemic, we collect the data of Covid-

19 daily new cases and daily new deaths worldwide, as well as the data from four different

countries on four different continents, i.e., US on North America, Italy on Europe, Brazil on

South America and China on Asia. Since the majority of the new cases and deaths occurred

in China are from Hubei province, we investigate on Hubei province separately.6 We briefly

introduce the datasets as follows, and refer interested readers to Appendix B.1 for more

details about the original raw datasets.

(1) Worldwide: The dataset is obtained from the World Health Organization (WHO),

which consists of daily new cases and daily deaths in 237 countries or regions, over the

time period from March 8, 2020 to September 30, 2021.

(2) US: The dataset is obtained from the US Centers for Disease Control (CDC), which

6Among the 34 provincial-level regions in China, Hubei was first attacked by Covid-19 pandemic and

suffered most. Up to September 30, 2021, there are about 71% new cases and 97.3% deaths in mainland

China reported from Hubei.
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consists of daily new cases and daily deaths in 51 states (including Washington D.C.),

over the time period from March 8, 2020 to September 30, 2021.

(3) Italy: The dataset is obtained from the Department of Civil Protection of Italy, which

consists of the daily new cases and daily deaths in 20 regions, over the time period

from March 8, 2020 to September 30, 2021.

(4) Brazil: The dataset is obtained from the Ministry of Health of Brazil, which consists

of daily new cases and daily deaths in 27 states, over the time period from March 22,

2020 to September 30, 2021.

(5) China: The dataset is obtained from the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University, which consists of daily new cases and daily deaths

in 33 provincial-level regions (including Hong Kong, Macao and Taiwan, but excluding

Hubei province), over the time period from January 23, 2020 to September 30, 2021.

(6) Hubei in China: The dataset is obtained from a medical technology company DXY.cn

in China that collected the raw data reported by government sectors in China, which

consists of daily new cases and daily deaths in 17 cities in Hubei province, over the

time period from January 25, 2020 to April 26, 2020.

We would like to use all data from the beginning of the breakout until the end of Septem-

ber in 2021 because we notice there might be some data corrections in recent months. Then,

we select March 8, 2020 as the starting time for US and Italy as well as worldwide because

the US CDC decided to relax the requirements for the nucleic acid testing on March 4 and

data from all states became available on March 8 (Team, 2020). For Brazil, We start from

March 22, 2020 rather than March 8, 2020 since the data of all states in Brazil became

available on that day. For China, we choose January 23, 2020 as the starting time because

the first record of new cases in CSSE was reported on that day. For Hubei in China, we

choose January 25, 2020 as the starting time because the first record of new cases in DXY.cn

was available on that day, and choose April 26, 2020 as the ending time because the last

hospitalized Covid-19 patient in Wuhan city was discharged on that day.
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Table 1: Variability scaling of Covid-19 in different countries or regions

Country (Date) Dimension Aggregation level β R2

Worldwide Temporal
Daily new cases within 572 days 0.94 ± 0.02 0.9416

Daily deaths within 572 days 0.84 ± 0.02 0.8853

(03/08/2020 –
Spatial

Daily new cases across 237 countries/regions 0.82 ± 0.02 0.9719

09/30/2021) Daily deaths across 237 countries/regions 0.76 ± 0.02 0.9496

US Temporal
Daily new cases within 572 days 0.89 ± 0.02 0.9135

Daily deaths within 572 days 0.88 ± 0.03 0.8858

(03/08/2020 –
Spatial

Daily new cases across 51 states 0.95 ± 0.04 0.9780

09/30/2021) Daily deaths across 51 states 0.85 ± 0.06 0.9490

Italy Temporal
Daily new cases within 572 days 0.87 ± 0.02 0.9507

Daily deaths within 572 days 0.87 ± 0.02 0.9436

(03/08/2020 –
Spatial

Daily new cases across 20 regions 0.96 ± 0.04 0.9913

09/30/2021) Daily deaths across 20 regions 0.91 ± 0.06 0.9841

Brazil Temporal
Daily new cases within 558 days 0.95 ± 0.02 0.9463

Daily deaths within 558 days 0.94 ± 0.02 0.9098

(03/22/2020 –
Spatial

Daily new cases across 27 states 1.04 ± 0.15 0.8926

09/30/2021) Daily deaths across 27 states 1.00 ± 0.08 0.9607

China Temporal
Daily new cases within 617 days 0.98 ± 0.03 0.9057

Daily deaths within 617 days 0.96 ± 0.02 0.9590

(01/23/2020 –
Spatial

Daily new cases across 33 provinces 0.77 ± 0.08 0.9260

09/30/2021) Daily deaths across 33 provinces 0.65 ± 0.04 0.9742

Hubei in China Temporal
Daily new cases within 93 days 0.93 ± 0.04 0.9783

Daily deaths within 93 days 0.96 ± 0.03 0.9842

(01/25/2020 –
Spatial

Daily new cases across 17 cities 0.94 ± 0.07 0.9800

04/26/2020) Daily deaths across 17 cities 0.91 ± 0.13 0.9397
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On each dataset, we analyze the variability scaling law in both the temporal and spatial

dimensions by fitting the loglinear regression model in Equation (2.1). Taking the Covid-19

data in US for example, in the temporal dimension analysis, we use the daily new cases and

new deaths data of 51 states from March 8, 2020 to September 30, 2021 (about 19-month

period with 572 days in total), and calculate the mean and standard deviation of new cases

and deaths over the 51 states for each day. Then, we obtain N = 572 data points and

use them to run the regression model. In the spatial dimension analysis, we calculate the

mean and standard deviation of daily new cases and deaths over the whole time period for

each state, and run the loglinear regression model using N = 51 data points, as shown in

Figure 1. Similarly, we apply the same procedure to analyze all other datasets. All results are

summarized in Table 1 and detailed plots of all other datasets are presented in Figures 4–8

in Appendix A.

From the results shown in Table 1, we have five important findings. First, we find that

there exists a strong linear relationship between log σ and log µ in either the temporal or

spatial dimensions, as all the values of R2 are above 0.89. The results indicate that there is

a common variability scaling law that governs the variability of Covid-19 new cases or new

deaths in the temporal and spatial dimensions.

Second, unlike the commonly assumed Poisson models in the healthcare management

literature, the exponents of the scaling relation, i.e., the values of β, are not always equal to

0.5. Notice that we may rewrite the variability scaling law as σ/µ ∝ µβ−1, where σ/µ is the

coefficient of variation that measures the demand variability per unit of average demand,

implying that there is a pooling effect when β < 1, but the pooling effect decreases as β

becomes larger. In particular, the results of β > 0.9 in some scenarios demonstrate a large

variability scaling effect but only mild pooling effect, which may lead to great challenges in

medical resource planning in the Covid-19 pandemic.

Third, for new cases, the values of β in spatial dimension in US and Italy are significantly

larger than those in temporal dimension, while the opposite results can be observed world-

wide and in China. One plausible reason is that the traveling restrictions among different

countries and strict traveling examinations among different cities in China may effectively

11



(a) new cases computed over all states for N = 572

days.

(b) new deaths computed over all states for N =

572 days.

(c) new cases computed over all days for N = 51

states.

(d) new deaths computed over all days for N = 51

states.

Figure 1: Variability scaling of Covid-19 in US.

lower the travel frequency, and thus lower the Covid-19 propagation geographically, com-

pared with the situations in US and Italy.

Fourth, the values of β in Brazil, for both new cases and deaths, no matter in temporal or

in spatial dimensions, are very close to 1,7 which is very similar to the results obtained in the

7We note that β = 1.04 for the new cases in the spatial dimension in Brazil, however, its 95% confidence

interval is [0.89, 1.19], which is relatively large compared with others but still covers values less than 1.
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early time at Hubei province in China. As for Hubei province, which was first attacked by

Covid-19 pandemic, there was no enough medical resource or effective actions to combat the

Covid-19 at the beginning, could cause high variability scaling phenomena. We conjecture

that the lack of sufficient medical resource or effective prevention and control measures could

also be the problems in some developing countries, such as Brazil, then leading to a higher

variability scaling, especially in new deaths, compared with developed countries, such as US

and Italy. Note that the small value of β = 0.65 for new deaths in the spatial dimension in

China also indicates the significant effectiveness of the Covid-19 prevention and treatment

policies taken in China.

Last but not least, it is also worthwhile pointing out that, except the result in the

temporal dimension in Italy and Hubei province, the values of β for new deaths tend to be

smaller than those for new cases in the same dimension, indicating a smaller variability for

new deaths, which may possibly be explained by the vaccine or treatment effect after being

confirmed.

2.2 Empirical Study in Other Healthcare Systems

We also examine the variability scaling in other healthcare demands, from 10 datasets in

4 different countries with respect to different healthcare systems. These datasets include

four detailed patient arrival admissions from a large hospital in China, Israel, Singapore

and the US, respectively; one dataset on the daily appointments to a group of clinics in

Singapore; one dataset on the admissions of all patients with the government insurance

plan to a cluster of hospitals from a provincial capital city in China; two datasets on the

all confirmed cases of two infectious diseases (i.e., hand-foot-mouth (HFM) disease and

dysentery disease, respectively) with their location information from a prefecture-level city

in China; one dataset on all emergency calls to an ambulance service center from one of the

largest cities in China; and one dataset on the demands of orthopedic surgery materials from

a major supplier at the provincial level in China (see Appendix B.2 for more details about

the 10 datasets).

We test the scaling relation on all 10 datasets in the temporal and spatial dimensions

13



Table 2: Variability scaling in various healthcare systems.

Healthcare demand Dimension Aggregation level β R2 Location (Year)

Inpatient admissions Temporal Hourly admission requests 0.89 ± 0.05 0.9833 China (2013)

in a China hospital Spatial Monthly requests from 262 cities 0.63 ± 0.01 0.9668

Inpatient admissions Temporal Hourly admissions 0.55 ± 0.05 0.9759 Singapore (2010)

in a Singapore hospital

All admissions Temporal Hourly admissions during weekdays 0.52 ± 0.02 0.9549 Israel (2004-2005)

in an Israel hospital

Emergency admissions Temporal Hourly admissions into Emergency 0.50 ± 0.03 0.9848 US (2006-2007)

in a US hospital Department (ED)

Clinic appointments Temporal Hourly appointment from 8am to 8pm 0.81 ± 0.02 0.9927 Singapore (2012-2013)

in Singapore Spatial Weekly requests from 26 postal districts 0.82 ± 0.03 0.9905

Insured inpatient Spatial Weekly admissions into 60 public hospitals 0.55 ± 0.04 0.9396 China (2012-2013)

admissions in different locations

Hand-Foot-Mouth Temporal Daily incidents in each week 0.71 ± 0.05 0.8484 China (2010-2012)

(HFM) disease Spatial Weekly incidents in 184 divisions 0.71 ± 0.03 0.9210

Dysentery disease Spatial Weekly incidents in 170 locations 0.59 ± 0.02 0.9645 China (2013)

Ambulance service Spatial Monthly ambulance calls from 83 subdistricts 0.88 ± 0.08 0.8468 China (2011)

Orthopedics surgery Spatial Monthly sales to 150 different hospitals 0.72 ± 0.04 0.8742 China (2012-2013)

materials
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whenever the data is supported. The results are summarized in Table 2. We can draw

similar conclusions as obtained from the Covid-19 data. Moreover, we have two additional

interesting findings. First, compared with the HFM and dysentery infectious diseases, we

notice that the values of β in Covid-19 tend to be larger than those in HFM and dysentery

diseases, which implies larger fluctuations in Covid-19 pandemic. Second, the values of β

for the patient admissions into a hospital in Singapore, Israel and the US in the temporal

dimension are smaller than 0.55, which indicates that Poisson arrival processes are suitable

to model these demands as widely used in the queueing literature. In the rest of the datasets,

we may conclude that many of the currently used models of resource planning with Poisson

assumptions tend to underestimate the resource requirement of the Covid-19 pandemic and

various healthcare systems and lead to a lower service quality.

3 The Mechanism: What Causes Variability Scaling?

Different models have been proposed to explain variability scaling (Eisler et al., 2008). Some

of these models are more conceptual. For instance, it was discovered that random walks on a

complex network can generate the variability scaling phenomenon in the temporal dimension

(De Menezes and Barabási, 2004). Some of these models are specifically designed to explain

a certain type of variability scaling phenomenon in physics or biology. For instance, in

mean-field thermodynamics, models have been proposed based on ferromagnetic Ising models

(Eisler et al., 2008), and in biology, models have been developed based on plant reproduction

processes (Koenig and Knops, 2000). However, these models may not be directly applicable

to the explanation of the variability scaling phenomena that we observe in Covid-19 and

other healthcare demands. In this paper, motivated by the mechanism of contagious diseases,

we establish a simplified network model, which is essentially a space-filling fractal network

model that has been used to explain allometric scaling by West et al. (1997, 1999), in order

to capture the correlation among demands.
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:level-0 node

Figure 2: Graphical illustration of the network model with m = 5 and k = 3.

3.1 The Network Model

We consider the case where the infections are correlated through some internal mechanism,

in which each demand node except those in the bottom level is directly connected to m+ 1

demand nodes. To simplify the analysis, we assume that the network has no cycles, thus,

is a tree structure.8 Denote the node at the center of the network as the level-0 node (i.e.,

the root or the central node in Figure 2). Note that the level-0 node has m + 1 descendant

demand units while the nodes in all other intermediate levels, i.e., level 1, 2, . . . , k − 1, have

m descendants and one parent node. The leaf nodes in the bottom level, i.e., level k, have no

descendant, where k is the number of levels of the network. For the purpose of mathematical

rigorousness, we assume that m ≥ 2 and k ≥ 3.

Let ni denote the number of nodes in level i, 0 ≤ i ≤ k. It can be shown that

n0 = 1, ni = (m+ 1)mi−1, 1 ≤ i ≤ k.

Then the total number of nodes in the network is

n = n0 + · · ·+ nk =
(m+ 1)mk − 2

m− 1
. (3.1)

8In medical literature, shortest path trees of human contact networks are often used to study the spread

of infectious disease (Salathé et al., 2010).
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For ease of presentation, we let the aggregated demand of all levels in the network be

D = X1 + · · ·+Xn, (3.2)

where E(Xi) = µ0 and Var(Xi) = σ2
0 for all i, and assume the correlation of any pair of

demands (Xi, Xj) is ρd = ρ0γ
d, where d is the distance between the two nodes. After some

derivation, we can obtain the results for Var(D) as follows.

Proposition 1. Suppose that the aggregated demand D is defined in Equation (3.2) with all

parameters specified above in the network model. We assume that m ≥ 2 and k ≥ 3. Then,

as n→∞ (i.e., k →∞), if mγ2 < 1,

Var(D) = σ2
0

(
1 +

(m− 1)ρ0γ
2

1−mγ2

)
n[1 + o(1)];

and if mγ2 > 1,

Var(D) = σ2
0

(m− 1)ρ0γ
2

mγ2 − 1
n2+2 log γ/ logm [1 + o(1)] .

Proof. We let CI and CO denote the summations of correlations for all pairs of nodes within

the same level and cross different levels, respectively. Then,

Var(D) = nσ2
0 +

∑
i 6=j

Cov(Xi, Xj) = nσ2
0 + σ2

0(CI + CO). (3.3)

We first analyze CI . Let Wi denote the sum of correlations for level i, 1 ≤ i ≤ k. Notice

that the distance between any two nodes at level 1 is 2, and there are n1m such pairs of

nodes. Then,

W1 = ρ2n1m = ρ0γ
2m(m+ 1).

Similarly, distance between any pair of nodes in level i (i = 2, . . . , k) may take values in

{2, 4, 6, . . . , 2i}. In particular, the number of pairs that have distance 2s is ni(m − 1)ms−1

for 1 ≤ s ≤ i − 1, while the number of pairs that have distance 2i is nim
i. Therefore, if

mγ2 6= 1,

Wi =
i−1∑
s=1

ρ2sni(m− 1)ms−1 + ρ2inim
i

= ρ0γ
2(m+ 1)(m− 1)mi−11− (mγ2)i−1

1−mγ2
+ ρ0γ

2i(m+ 1)m2i−1,
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and

CI ≡ W1 +W2 + . . .+Wk

= ρ0(m+ 1)γ2mk 1− (mγ2)k

1−mγ2
. (3.4)

Next we analyze CO. Let Tij denote the sum of correlation terms between level-i and

level-j nodes. Notice that distance between the node at level 0 and a node at level j is j.

Then, for j ≥ 1,

T0j = ρjnj = ρ0γ
j(m+ 1)mj−1.

For 1 ≤ i ≤ k − 1, and j > i, the distance between a node at level i and a node at level

j may take value in {j − i, j − i + 2, . . . , j − i + 2i}. In particular, there are nim
j−i pairs

with distance j − i,ni(m− 1)mj−ims−1 pairs with distance j − i+ 2s for 1 ≤ s ≤ i− 1, and

nim
j−imi pairs with distance j − i+ 2i. If mγ2 6= 1, for 1 ≤ i ≤ k − 1 and j > i, we have

Tij = ni

[
ρj−im

j−i +
i−1∑
s=1

ρj−i+2s(m− 1)mj−ims−1 + ρj+im
j

]

= ρ0(m+ 1)γj−imj−11− (mγ2)i+1

1−mγ2
− ρ0(m+ 1)γj−imj−2mγ

2 − (mγ2)i

1−mγ2
.

Then by elementary algebra, if mγ2 6= 1 and mγ 6= 1,

CO = 2
k−1∑
i=0

k∑
j=i+1

Tij =
2ρ0(m+ 1)γ

1−mγ2

[
(1 + γ)mk

m− 1
+
γ2k+1m2k

1−mγ
− 1−mγ2

(m− 1)(1−mγ)

}
,

Recall that Var(D) = nσ2
0 + σ2

0(CI + CO), and

mk = n(m− 1)/(m+ 1) + 2/(m+ 1).

If mγ2 < 1 and mγ = 1, it can be verified that, as n→∞,

CI = ρ0(m+ 1)γ2
1− γk

1− γ
mk =

ρ0γ
2(m− 1)

1− γ
n[1 + o(1)] =

ρ0
m
n[1 + o(1)]

and

CO =
2ρ0(m+ 1)

1− γ

[
m+ 1

m− 1
mk−2 − 2k(m− 1) +m+ 1

(m− 1)m2

]
=

2ρ0(m+ 1)

m(m− 1)
n[1 + o(1)],

and thus

Var(D) = σ2
0

(
1 +

ρ0(3m+ 1)

m(m− 1)

)
n[1 + o(1)].
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If mγ2 < 1 and mγ 6= 1, it can be seen that

CI =
ρ0γ

2(m− 1)

1−mγ2
n[1 + o(1)],

and

CO =
2ρ0(m+ 1)γ

1−mγ2
mk

[
1 + γ

m− 1
+
γ(mγ2)k

1−mγ
+ o(1)

]
=

2ρ0γ(1 + γ)

1−mγ2
n[1 + o(1)],

and thus

Var(D) = σ2
0

(
1 +

ρ0γ

1−mγ2
(mγ + γ + 2)

)
n[1 + o(1)].

If mγ2 > 1, we have,

CI = ρ0(m+ 1)γ2
(
m− 1

m+ 1
n+

2

m+ 1

)
(mγ2)k − 1

mγ2 − 1

=
ρ0(m+ 1)γ2

mγ2 − 1

(
m− 1

m+ 1
n+

2

m+ 1

)(
(mγ2)(logn+log(m−1

m+1
+ 2

(m+1)n))/ logm − 1
)
.

Notice that log(mγ2)/ logm > 0, and

(mγ2)(logn+log(m−1
m+1

+ 2
(m+1)n))/ logm

=

(
m− 1

m+ 1
+

2

(m+ 1)n

) log(mγ2)
logm

n
log(mγ2)

logm

=

(
m− 1

m+ 1

) log(mγ2)
logm

n
log(mγ2)

logm [1 + o(1)]

= (mγ2)log
m−1
m+1

/ logmn1+2 log γ/ logm[1 + o(1)].

Then,

CI =
ρ0(m+ 1)γ2

mγ2 − 1

m− 1

m+ 1
(mγ2)log

m−1
m+1

/ logmn2+2 log γ/ logm[1 + o(1)].

Similarly, it can be verified that

CO =
2ρ0(m+ 1)γ

mγ2 − 1

[
γ(mγ2)kmk

mγ − 1
+

mγ2 − 1

(mγ − 1)(m− 1)
− (1 + γ)mk

m− 1

]
=

2ρ0(m+ 1)γ

(mγ2 − 1)(mγ − 1)

[
γ
m− 1

m+ 1
(mγ2)log

m−1
m+1

/ logmn2+2 log γ/ logm[1 + o(1)]− 1 + γ

m+ 1
n[1 + o(1)]

]
=

2ρ0(m+ 1)γ

(mγ2 − 1)(mγ − 1)
γ
m− 1

m+ 1
(mγ2)log

m−1
m+1

/ logmn2+2 log γ/ logm[1 + o(1)],

where the last equality follows from the fact that 2+2 log γ/ logm > 1. Therefore, if mγ2 > 1,

Var(D) = σ2
0(n+ CI + CO)
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= σ2
0

ρ0(m− 1)(mγ + 1)γ2

(mγ2 − 1)(mγ − 1)
(mγ2)log

m−1
m+1

/ logmn2+2 log γ/ logm[1 + o(1)].

Based on the result in Proposition 1, we are ready to state the main results to exhibit

the variability scaling in this network model.

Theorem 1. Suppose that the aggregated demand D = X1 +X2 + · · ·+Xn, where {Xi, i =

1, 2, . . . , n} is all atomic demand units positioned at all levels in the network model with k

levels, in which level 0 has m+1 descendant nodes and level 1, 2, . . . , k−1 have m descendant

nodes and one parent node, and n = [(m + 1)mk − 2]/(m − 1) as shown in Equation (3.1).

Let E(Xi) = µ0 and Var(Xi) = σ2
0 denote the mean and variance for all i, and let ρd = ρ0γ

d

denote the correlation between any pair of Xi and Xj with distance d defined in the network

model, where ρ0 ∈ (0, 1] and γ ∈ (0, 1). Then, as n → ∞ (i.e., k → ∞), the scaling

parameter β defined in Equation (1.1) can be expressed as follows,

β = 0.5 if mγ2 < 1, and β = 1 +
log γ

logm
if mγ2 > 1. (3.5)

Notice that, β increases with these two parameters m and γ. In addition, when mγ2 > 1,

Equation (3.5) implies that 0.5 < β ≤ 1. The results of both β > 0.5 and β = 0.5 match

what we have observed empirically in Covid-19 and other healthcare systems.

Remark 1. (a). The proposed network is a stylized model. One may consider each node

as one person, then m is the average number of people contacted with others and γ is

the individual infection rate. One may consider each node as one family, the m is the

average number of contacted families and γ is the family infection rate. In fact, each

node could be used to represent one region or one time-interval. Intuitively, the policies

like travel restrictions and hygiene regulations can reduce the parameters m and γ, thus

reduce the coefficient β.

(b). Even though we make strong assumptions of the proposed network model, such as each

node (except the leaf nodes) connects to exactly the other m + 1 nodes, the model can

be easily extended to the case with a random number of connected nodes, which will be

demonstrated from the simulation results in the following subsection.
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3.2 Simulation Results

We have conducted simulation experiments to test the robustness of the results for the

network model. For all simulations, we set µ0 = σ2
0 = 1 and ρ0 = 1 and assume that the

atomic demand Xi has the mean µ0 and variance σ2
0 and the correlation between any pair

of Xi and Xj, i 6= j, is specified according to the network structure of the proposed model.

We take 12 values of γ, i.e., γ = {0.001, 0.01, 0.1, 0.2, 0.3, . . . , 1}. For each γ, we generate

a fixed number of random networks with different size n. The size of network n varies from

a few nodes to thousands of nodes. The distance of any two nodes d is the length of the

shortest path between these two nodes. The expected total demand E(D) is actually n, and

the variance of demand Var(D) can be calculated by Equation (3.3). Using linear regression

(as discussed in the empirical analysis), we can estimate the coefficient β for each γ. In order

to reflect the random nature of actual networks, we set the number of nodes connected any

non-leaf node as a Poisson random variable with mean m+ 1 = 6. In particular, we consider

5 random networks with 6 replications for each level k = {1, 2, . . . , 5}, resulting 30 random

networks in total, i.e., 30 observations for the regression model.

The simulation results show that variability scaling also emerges in these random net-

works (as in Figure 3) and the exponents are close to the ones derived for the deterministic

networks, which are derived in Equation (3.5) when the number of descendants or the num-

ber of connected nodes is fixed as m + 1 (also see Table 3). From Table 3, we notice that

the value of β increases as γ increases, which is consistent with the theoretical results in

Equation (3.5). While β in the random case may be slightly different from that in the

deterministic case, which could be due to the estimation error of the mean and standard

Table 3: Comparison of variability scaling exponent β between the deterministic and random

networks with m+ 1 = 6.

γ 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mγ2 5× 10−6 5× 10−4 0.05 0.20 0.45 0.80 1.25 1.80 2.45 3.20 4.05 5.00

deterministic 0.50 0.50 0.50 0.50 0.50 0.50 0.57 0.68 0.78 0.86 0.93 1.00

random 0.50 0.50 0.50 0.51 0.53 0.57 0.63 0.72 0.79 0.87 0.93 0.99
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Figure 3: Simulation results when the number of connected neighbors follows a Poisson

distribution with mean m+ 1 = 6.

deviation. From Figure 3, we notice that the linear regression model fits the simulation data

quite well for our proposed network model.

4 The Application: How to Apply Variability Scaling?

In this section, we illustrate how variability scaling affects the capacity planning via two

simple inventory models. The first is the classical newsvendor problem with the relationship

between the mean and standard deviation specified by the variability scaling in the demand

function, and the second is a multi-period/multi-location inventory model with demand

correlation structure specified by the proposed network model. We demonstrate that the

safety stock level will increase while the pooling effect will decrease when the variability

scaling effect, i.e., the value of β, becomes larger.

4.1 Capacity Planning for A Single-node Inventory Model

We first consider the classical newsvendor problem (Zipkin, 2000) for a certain type of medical

resources for Covid-19. Suppose that the demand for this resource can be fully determined by

the number of susceptible, new infected or death cases, which are random and the relationship

22



between the mean and standard deviation follow the variability scaling law. For example, if

we know there are 100 new confirmed cases, then it requires 100 additional beds to admit

these patients. For notational simplicity, we directly model the demand of the medical

resource as a random variable D, with cumulative distribution function F . In practice,

F is unknown and hard to estimate due to the high fluctuation in Covid-19 pandemic.

Fortunately, different methods have been proposed in the literature to provide an accurate

estimation of the mean E(D). For illustrative purpose, we take a simple way by assuming

that D follows a normal distribution N(µ, σ2), where µ is known and σ = αµβ with α and

β estimated from the loglinear regression model.

Let h and p denote the unit holding cost and unit penalty cost of unsatisfied orders,

respectively. Let q denote the order quantity and the expected total cost is

H(q) = pE [max(D − q, 0)] + hE [max(q −D, 0)] .

By minimizing the expected cost function H(q), we can determine the optimal inventory

level q∗ as follows,

q∗ = µ+ z̄αµβ, (4.1)

where z̄ is the p/(p + h)th quantile of the standard normal distribution. Then, the corre-

sponding optimal cost is

H(q∗) = [hz̄ + (h+ p)R(z̄)] · αµβ, (4.2)

where R(u) =
∫∞
u

(w− u) 1√
2π
e−w

2/2dw is the right-hand unit normal linear-loss integral that

is widely used in inventory literature.

From Equations (4.1) and (4.2), we can see that the optimal safety stock level and the

total cost increase in an exponential rate as the variability scaling coefficient β increases.

When β is close to 0.5, it implies there is a significant risk pooling effect since the safety

stock level is in a near-square-root order of the mean level. When β is close to 1, it indicates

there is almost no pooling effect as the safety stock increases nearly in the same order of the

mean demand to satisfy a certain QoS level.
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4.2 Capacity Planning for AMulti-period/location Inventory Model

In the following, we establish a simple multi-period/multi-location inventory model to illus-

trate how the variability scaling affects the optimal capacity planning decision for a central

planner. We consider that there are n nodes in the proposed network model, which could

represent n time periods or locations, and each has the demand of one particular medical

resource Xi, where i = 1, 2, . . . , n. For simplicity, we assume that Xi ∼ N(µ0, σ
2
0), and the

correlation of any pair of demands (Xi, Xj) is ρd = ρ0γ
d, with all parameters defined in

Theorem 1.

Without pooling, we assume that each individual node solves the classic newsvendor

problem without considering the correlations. Then, the optimal expected cost for each

node is C = c0σ0, where c0 = hz̄ + (h + p)R(z̄) with unit holding cost h and unit shortage

cost p and z̄ is the p/(p + h)th quantile of the standard normal distribution and R(·) is

the right-hand unit normal linear-loss integral function as defined before. The optimal total

expected cost for the system with n nodes is simply TC1 = nC = nc0σ0.

With pooling, we assume that the central planner solves the classic newsvendor problem

for the entire system with n nodes. Then, the optimal total expected cost for the system is

TC2 = c0σn, where

σn =

√√√√ n∑
i=1

n∑
j=1

σij

with σij being the covariance of Xi and Xj. By the variability scaling result in Theorem 1,

we know that σn ∝ nβ, where the scaling coefficient β is typically between 0.5 and 1. Hence,

the cost saving of pooling is
TC2

TC1

=
σn
nσ0
∝ nβ−1.

We have established a bridge between two important results, i.e., the variability scaling

effect and the economies of scale, in which the former one is widely observed in complex

systems and the latter one is well known in economics. Then, the cost savings by pooling n

subsystems into a centralized system can be approximately estimated as

Cost Savings ≈ (1− nβ−1)× 100%.
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If β is close to 0.5, we achieve strong cost savings by pooling demands together. If β is close

to 1, as observed from the Covid-19 and some other healthcare datasets in Section 2, then

the benefit of pooling becomes negligible. In practice, the system manager or government

decision maker must be very careful when making pooling decisions when the demand vari-

ability of the system is large, e.g., the scaling effect β is significantly greater than 0.8. For

instance, considering β = 0.98 for the new cases in the temporal dimension in China, there

is only about 12.1% cost savings over the long time period of 617 days. While there is about

55.3% cost savings over the 33 provinces if using β = 0.77 for the new cases in the spatial

dimension in China. To some extent, it means there is not so much pooling benefit if requir-

ing to prepare some medical resources for a long time period that is more than one year.9

However, allowing different regions to share their resources could bring significant pooling

benefit in the spatial dimension, which is definitely worthy to design some mechanism to

guarantee the sharing system function in the future study.

5 Concluding Remarks

As the Covid-19 pandemic keeps going, it is very critical to design a reasonable and effective

capacity planning of medical resources. Accurately calibrating the evolution of Covid-19

is the precondition to achieve this goal. However, most of the current works focus just on

predicting mean demands of new cases and deaths and so on, but seldom provide trustworthy

prediction or estimation of the demand variabilities, and therefore are insufficient for proper

capacity planning.

In this paper, we adopt the commonly used approach to quantifying the variability by the

standard deviation and establish a variability scaling law between the mean and standard

deviation. Our empirical findings show that variability scaling is common in the Covid-19

pandemic and various other healthcare demands, most of which yield the variability scaling

coefficient β larger than 0.5 and even greater than 0.7 for most Covid-19 datasets. This

indicates that some existing demand models with β equal to 0.5 may underestimate the

9Recall the ventilator and mask stockpiling example in New York City mentioned in Section 1, it could

be even worse if taking the maintenance and other costs into consideration in practice.
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variation of the medical demands and overestimate the risk pooling effects. We then build

a stylized network model to explain the internal demand/infections correlation, from which

we can see how correlations among the network affect the intensity of variability scaling. At

last, we use two simple inventory models to illustrate that larger variability scaling effect

leads to higher inventory stock level, and lower pooling effect.

Our proposed models serve as a first step towards the understanding of the mechanisms

behind variability scaling. In the future, as more information about Covid-19 becomes

available, e.g., the imposed social distancing mandates, factors that affect the variability

scaling effect deserve further investigation. The change of capacity of the nucleic acid testing

and other cure resources could also affect the variability of new cases and new deaths for

Covid-19, which is also interesting to study. While we assume a linear relationship between

the mean and standard deviation in our study, it may be possible to establish a nonlinear

relationship as more data are available. It is also worthwhile to model the variability scaling

effect in different dimensions by developing advanced stochastic or complex network models.

In terms of examining the impact on the capacity planning and resource allocation problems

in the Covid-19 pandemic, one may propose more sophisticated problem formulations rather

than the stylized newsvendor model.
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A More Results in Covid-19 Pandemic

(a) new cases computed over all countries/regions

for N = 572 days.

(b) new deaths computed over all coun-

tries/regions for N = 572 days.

(c) new cases computed over all days for N = 237

countries/regions.

(d) new deaths computed over all days for N = 237

countries/regions.

Figure 4: Variability scaling of Covid-19 worldwide.
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(a) new cases computed over all regions for N =

572 days.

(b) new deaths computed over all regions for N =

572 days.

(c) new cases computed over all days for N = 20

regions.

(d) new deaths computed over all days for N = 20

regions.

Figure 5: Variability scaling of Covid-19 in Italy.
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(a) new cases computed over all states for N = 558

days.

(b) new deaths computed over all states for N =

558 days.

(c) new cases computed over all days for N = 27

states.

(d) new deaths computed over all days for N = 27

states.

Figure 6: Variability scaling of Covid-19 in Brazil.
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(a) new cases computed over all provinces for N =

617 days.

(b) new deaths computed over all provinces for

N = 617 days.

(c) new cases computed over all days for N = 33

provinces.

(d) new deaths computed over all days for N = 33

provinces.

Figure 7: Variability scaling of Covid-19 in China.
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(a) new cases computed over all cities for N = 93

days.

(b) new deaths computed over all cities for N = 93

days.

(c) new cases computed over all days for N = 17

cities.

(d) new deaths computed over all days for N = 17

cities.

Figure 8: Variability scaling of Covid-19 in Hubei in China.
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B Data Sources and Descriptions

B.1 Data Sources and Descriptions for Covid-19

(1) Worldwide: The dataset is provided by the WHO. It includes daily new cases and

daily deaths of 237 countries or regions in the world, which correspond to the columns

named “New cases” and “New deaths” in the original file.

(2) US: The dataset is provided by the US CDC. It contains daily new cases and daily

deaths (including both confirmed and probable cases) in 60 regions of US (including

50 states, New York City, Washington D.C. and 8 overseas territories). We exclude

the data of all territories and combine the data of New York City with New York

state, and use only the daily new confirmed cases (i.e., column “new case”) and daily

deaths (i.e., column “new death”) from the 50 states and Washington D.C. Note that

the CDC may correct the historical data, so the dataset may be slightly different if

downloading in different time. The date we downloaded the dataset is December 8,

2021.

(3) Italy: The dataset is provided by the Civil Protection Department of Italy. The raw

dataset records the cases, deaths and the usage of medical resources in 21 regions every-

day. Note that Trentino-Alto Adige region consists of Bolzano and Trento provinces,

which have been recorded separately. In our analysis, we combine Bolzano and Trento

together as one region, and use the daily new cases (i.e., column “nuovi positivi”) and

calculate daily new deaths from the accumulative deaths (i.e., column “deceduti”) by

subtracting the accumulative deaths at previous date from the accumulative deaths at

current date.

(4) Brazil: The dataset is obtained from the Federal University of Viçosa (Cota, 2020),

which is originally provided by the Ministry of Health of Brazil. The Federal Uni-

versity of Viçosa research team has collected the data of new cases, deaths, tests and

vaccinations in 27 states. We use the accumulative cases and deaths data (i.e., columns

“totolCasesMS” and “deathsMS”) to calculate the daily new cases or daily deaths by
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a similar subtraction as done for Italy. Note that we select March 22, 2020 as the

starting time since the first record is on March 21, 2020 in this dataset.

(5) China: The CSSE at Johns Hopkins University provides the dataset in two separate

files as accumulative cases and accumulative deaths. The two files record the accumu-

lative cases and deaths in 195 countries or regions. We include Taiwan in our analysis

and deleted the records with “unknown” in column “Province/State” in raw datasets.

Then, we use the accumulative cases and deaths data in China at province level, and

calculate the daily new cases and daily deaths by subtraction.

(6) Hubei in China: We use the file called “DXYArea.csv” in the dataset, which is provided

by a medical technology company DXY.cn in China. The dataset includes new cases,

deaths and cure data in the city level in China. We exclude the data of “Area not

defined” and those left blank in column “cityEnglishName”, and use the accumulative

cases and deaths (i.e., columns “city confirmedCount” and “city deadCount”) of 17

cities in Hubei province to calculate the daily new cases and daily deaths by subtraction.

Note that there may be more than one record in some dates, we just use the last record

in these dates.

B.2 Data Sources and Descriptions for Other Healthcare Systems

We follow the order of the datasets reported in Table 2 in the paper.

(1) Inpatient admission requests include 243,686 inpatient admission requests in one of the

largest hospital in China from 262 cities in 2013.

(2) Inpatient admissions refer to inpatient admissions of 11 major clusters (i.e., Cardi-

ology, Dental, EDTU, Ear-Nose-Throat, Eye, Medicine, Gynaecology-and-Obstetrics,

Oncology, Orthopedics, Paediatrics and Surgery) into a general hospital in Singapore

in 2010.
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(3) Inpatient admissions into an Israel hospital were from a large hospital in Israel, over

a period of 2 years (January 2004 – December 2005). This hospital consists of about

1000 beds.

(4) ED arrivals refer to the patient arrivals of an emergency department (ED) of a univer-

sity hospital in the US, starting from July 1st, 2010 to June 30th, 2011, which contains

44,217 arrival records in total.

(5) Clinic appointments refer to appointment requests in a group of clinics from 28 postal

districts in Singapore from 2012 to 2013.

(6) Insured inpatient admissions include 125,585 inpatient admission records in 60 public

hospitals in a provincial capital city of China from 2012 to 2013. Those inpatients are

subsidized by the medical insurance for urban residents.

(7) Hand-foot-mouth disease refers to all the cases of hand-foot-mouth disease in a prefecture-

level city of China from 2010 to 2012.

(8) Dysentery disease refers to all the cases of dysentery in a prefecture-level city of China

in 2013.

(9) Ambulance service refers to monthly ambulance calls from 83 postal districts in one of

the largest cities of China in 2011.

(10) Orthopedics surgery materials refer to the sales data from a company that sells or-

thopedics surgery products. There are 5,909 products in the inventory, which can be

further aggregated into 1,035 types of products. The dataset includes all the sales data

from June 2012 to April 2013.
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